Individual Assembly of Radical Molecules on Superconductors: Demonstrating Quantum Spin Behavior and Bistable Charge Rearrangement
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39806870
PubMed Central
PMC11781030
DOI
10.1021/acsnano.4c12387
Knihovny.cz E-resources
- Keywords
- Yu-Shiba-Rusinov states, molecular manipulation, radical molecules, scanning tunneling microscopy, spin switch, superconductors,
- Publication type
- Journal Article MeSH
High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced. Due to local screening and charge redistribution, we observe either charged or neutral molecules, which couple in a sophisticated way, showing quantum spin behavior that deviates from the classical spins. Dimers at different separations show multiple Yu-Shiba-Rusinov peaks in tunneling spectroscopy of varying intensity, which are in line with the superconducting two-impurity Anderson model, where singlet (S = 0) and doublet (S = 1/2) ground states are found. The assembly of chains of 3, 4, and 5 molecules shows alternating charge patterns, where the edge molecules always host a charge/spin. The tetramer is observed in two configurations, where the neutral site is moved by one position. We show that these two configurations can be switched by the action of the probing tip in a nondestructive manner, demonstrating that the tetramer is an information unit, based on single-electron charge reorganization.
Department of Physics University of Basel Klingelbergstrasse 82 4056 Basel Switzerland
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 00 Prague 8 Czech Republic
See more in PubMed
Heinrich B. W.; Pascual J. I.; Franke K. J. Single Magnetic Adsorbates on s-Wave Superconductors. Prog. Surf. Sci. 2018, 93, 1–19. 10.1016/j.progsurf.2018.01.001. DOI
Linder J.; Robinson J. W. Superconducting Spintronics. Nat. Phys. 2015, 11, 307–315. 10.1038/nphys3242. DOI
Nadj-Perge S.; Drozdov I. K.; Li J.; Chen H.; Jeon S.; Seo J.; MacDonald A. H.; Bernevig B. A.; Yazdani A. Observation of Majorana Fermions in Ferromagnetic Atomic Chains on a Superconductor. Science 2014, 346, 602–607. 10.1126/science.1259327. PubMed DOI
Trahms M.; Melischek L.; Steiner J. F.; Mahendru B.; Tamir I.; Bogdanoff N.; Peters O.; Reecht G.; Winkelmann C. B.; von Oppen F.; Franke K. J. Diode Effect in Josephson Junctions With a Single Magnetic Atom. Nature 2023, 615, 628–633. 10.1038/s41586-023-05743-z. PubMed DOI PMC
Balatsky A. V.; Vekhter I.; Zhu J.-X. Impurity-Induced States in Conventional and Unconventional Superconductors. Rev. Mod. Phys. 2006, 78, 373–433. 10.1103/RevModPhys.78.373. DOI
Ruby M.; Peng Y.; von Oppen F.; Heinrich B. W.; Franke K. J. Orbital Picture of Yu-Shiba-Rusinov Multiplets. Phys. Rev. Lett. 2016, 117, 18680110.1103/PhysRevLett.117.186801. PubMed DOI
Choi D.-J.; Rubio-Verdú C.; de Bruijckere J.; Ugeda M. M.; Lorente N.; Pascual J. I. Mapping the Orbital Structure of Impurity Bound States in a Superconductor. Nat. Commun. 2017, 8, 1517510.1038/ncomms15175. PubMed DOI PMC
Cornils L.; Kamlapure A.; Zhou L.; Pradhan S.; Khajetoorians A.; Fransson J.; Wiebe J.; Wiesendanger R. Spin-Resolved Spectroscopy of the Yu-Shiba-Rusinov States of Individual Atoms. Phys. Rev. Lett. 2017, 119, 19700210.1103/PhysRevLett.119.197002. PubMed DOI
Kim H.; Palacio-Morales A.; Posske T.; Rózsa L.; Palotás K.; Szunyogh L.; Thorwart M.; Wiesendanger R. Toward Tailoring Majorana Bound States in Artificially Constructed Magnetic Atom Chains on Elemental Superconductors. Sci. Adv. 2018, 4, eaar525110.1126/sciadv.aar5251. PubMed DOI PMC
Odobesko A.; Di Sante D.; Kowalski A.; Wilfert S.; Friedrich F.; Thomale R.; Sangiovanni G.; Bode M. Observation of Tunable Single-Atom Yu-Shiba-Rusinov States. Phys. Rev. B 2020, 102, 17450410.1103/PhysRevB.102.174504. DOI
Liebhaber E.; Rütten L. M.; Reecht G.; Steiner J. F.; Rohlf S.; Rossnagel K.; von Oppen F.; Franke K. J. Quantum Spins and Hybridization in Artificially-Constructed Chains of Magnetic Adatoms on a Superconductor. Nat. Commun. 2022, 13, 216010.1038/s41467-022-29879-0. PubMed DOI PMC
Kezilebieke S.; Dvorak M.; Ojanen T.; Liljeroth P. Coupled Yu-Shiba-Rusinov States in Molecular Dimers on NbSe2. Nano Lett. 2018, 18, 2311–2315. 10.1021/acs.nanolett.7b05050. PubMed DOI PMC
Malavolti L.; Briganti M.; Hänze M.; Serrano G.; Cimatti I.; McMurtrie G.; Otero E.; Ohresser P.; Totti F.; Mannini M.; et al. Tunable Spin-Superconductor Coupling of Spin 1/2 Vanadyl Phthalocyanine Molecules. Nano Lett. 2018, 18, 7955–7961. 10.1021/acs.nanolett.8b03921. PubMed DOI
Shahed S. M. F.; Ara F.; Hossain M. I.; Katoh K.; Yamashita M.; Komeda T. Observation of Yu-Shiba-Rusinov States and Inelastic Tunneling Spectroscopy for Intramolecule Magnetic Exchange Interaction Energy of Terbium Phthalocyanine (TbPc) Species Adsorbed on Superconductor NbSe2. ACS Nano 2022, 16, 7651–7661. 10.1021/acsnano.1c11221. PubMed DOI PMC
Xia H.-N.; Minamitani E.; Žitko R.; Liu Z.-Y.; Liao X.; Cai M.; Ling Z.-H.; Zhang W.-H.; Klyatskaya S.; Ruben M.; Fu Y.-S. Spin-Orbital Yu-Shiba-Rusinov States in Single Kondo Molecular Magnet. Nat. Commun. 2022, 13, 638810.1038/s41467-022-34187-8. PubMed DOI PMC
Homberg J.; Weismann A.; Berndt R.; Gruber M. Inducing Controlling Molecular Magnetism Through Supramolecular Manipulation. ACS Nano 2020, 14, 17387–17395. 10.1021/acsnano.0c07574. PubMed DOI
Li C.; Homberg J.; Weismann A.; Berndt R. On-Surface Synthesis and Spectroscopy of Aluminum Phthalocyanine on Superconducting Lead. ACS Nano 2022, 16, 16987–16995. 10.1021/acsnano.2c07106. PubMed DOI
Huang H.; Drost R.; Senkpiel J.; Padurariu C.; Kubala B.; Yeyati A. L.; Cuevas J. C.; Ankerhold J.; Kern K.; Ast C. R. Quantum Phase Transitions and the Role of Impurity-Substrate Hybridization in Yu-Shiba-Rusinov States. Commun. Phys. 2020, 3, 199.10.1038/s42005-020-00469-0. DOI
Karan S.; Huang H.; Ivanovic A.; Padurariu C.; Kubala B.; Kern K.; Ankerhold J.; Ast C. R. Tracking a Spin-Polarized Superconducting Bound State Across a Quantum Phase Transition. Nat. Commun. 2024, 15, 45910.1038/s41467-024-44708-2. PubMed DOI PMC
Chatzopoulos D.; Cho D.; Bastiaans K. M.; Steffensen G. O.; Bouwmeester D.; Akbari A.; Gu G.; Paaske J.; Andersen B. M.; Allan M. P. Spatially Dispersing Yu-Shiba-Rusinov States in the Unconventional Superconductor FeTe0.55Se0.45. Nat. Commun. 2021, 12, 29810.1038/s41467-020-20529-x. PubMed DOI PMC
Mas-Torrent M.; Crivillers N.; Rovira C.; Veciana J. Attaching Persistent Organic Free Radicals to Surfaces: How and Why. Chem. Rev. 2012, 112, 2506–2527. 10.1021/cr200233g. PubMed DOI
Zhang Y.-h.; Kahle S.; Herden T.; Stroh C.; Mayor M.; Schlickum U.; Ternes M.; Wahl P.; Kern K. Temperature and Magnetic Field Dependence of a Kondo System in the Weak Coupling Regime. Nat. Commun. 2013, 4, 211010.1038/ncomms3110. PubMed DOI PMC
Sun Q.; Mateo L. M.; Robles R.; Ruffieux P.; Lorente N.; Bottari G.; Torres T.; Fasel R. Inducing Open-Shell Character in Porphyrins Through Surface-Assisted Phenalenyl π-Extension. J. Am. Chem. Soc. 2020, 142, 18109–18117. 10.1021/jacs.0c07781. PubMed DOI
He Y.; Li N.; Castelli I. E.; et al. Observation of Biradical Spin Coupling through Hydrogen Bonds. Phys. Rev. Lett. 2022, 128, 23640110.1103/PhysRevLett.128.236401. PubMed DOI
Li C.; Kaspar C.; Zhou P.; Liu J.-C.; Chahib O.; Glatzel T.; Häner R.; Aschauer U.; Decurtins S.; Liu S.-X.; Thoss M.; Meyer E.; Pawlak R. Strong Signature of Electron-Vibration Coupling in Molecules on Ag(111) Triggered by Tip-Gated Discharging. Nat. Commun. 2023, 14, 595610.1038/s41467-023-41601-2. PubMed DOI PMC
Pawlak R.et al.Gate-Tunable Topological Superconductivity in a Supramolecular Electron Spin Lattice. arXiv (Condensed Matter) 22 December 2023, 2310.18134, Ver.2., https://arxiv.org/abs/2310.18134 (accessed 20 January 2024).
Dominikowska J. Halogen-Bonded Haloamine Trimers-Modelling the X3 Synthon. Phys. Chem. Chem. Phys. 2020, 22, 21938–21946. 10.1039/D0CP03352A. PubMed DOI
Peyrot D.; Silly M. G.; Silly F. X3 Synthon Geometries in Two-Dimensional Halogen-Bonded 1,3,5-tris(3,5-dibromophenyl)benzene Self-Assembled Nanoarchitectures on Au(111)-(22×√3). Phys. Chem. Chem. Phys. 2018, 20, 3918–3924. 10.1039/C7CP06488H. PubMed DOI
Yang Z.; Fromm L.; Sander T.; Gebhardt J.; Schaub T. A.; Görling A.; Kivala M.; Maier S. On-Surface Assembly of Hydrogen- and Halogen-Bonded Supramolecular Graphyne-Like Networks. Angew. Chem., Int. Ed. 2020, 59, 9549–9555. 10.1002/anie.201916708. PubMed DOI PMC
Frota H. O. Shape of the Kondo Resonance. Phys. Rev. B 1992, 45, 1096–1099. 10.1103/PhysRevB.45.1096. PubMed DOI
Ruby M.; Pientka F.; Peng Y.; von Oppen F.; Heinrich B. W.; Franke K. J. Tunneling Processes into Localized Subgap States in Superconductors. Phys. Rev. Lett. 2015, 115, 08700110.1103/PhysRevLett.115.087001. PubMed DOI
De Franceschi S.; Kouwenhoven L.; Schönenberger C.; Wernsdorfer W. Hybrid Superconductor-Quantum Dot Devices. Nat. Nanotechnol. 2010, 5, 703–711. 10.1038/nnano.2010.173. PubMed DOI
Žonda M.; Pokorný V.; Janiš V.; Novotný T. Perturbation Theory of a Superconducting 0−π Impurity Quantum Phase Transition. Sci. Rep. 2015, 5, 882110.1038/srep08821. PubMed DOI PMC
Ménard G. C.; Guissart S.; Brun C.; Pons S.; Stolyarov V. S.; Debontridder F.; Leclerc M. V.; Janod E.; Cario L.; Roditchev D.; Simon P.; Cren T. Coherent Long-Range Magnetic Bound States in a Superconductor. Nat. Phys. 2015, 11, 1013–1016. 10.1038/nphys3508. DOI
Franke K. J.; Schulze G.; Pascual J. I. Competition of Superconducting Phenomena and Kondo Screening at the Nanoscale. Science 2011, 332, 940–944. 10.1126/science.1202204. PubMed DOI
Farinacci L.; Ahmadi G.; Reecht G.; Ruby M.; Bogdanoff N.; Peters O.; Heinrich B. W.; von Oppen F.; Franke K. J. Tuning the Coupling of an Individual Magnetic Impurity to a Superconductor: Quantum Phase Transition and Transport. Phys. Rev. Lett. 2018, 121, 19680310.1103/PhysRevLett.121.196803. PubMed DOI
Roch N.; Florens S.; Bouchiat V.; Wernsdorfer W.; Balestro F. Quantum Phase Transition in a Single-Molecule Quantum Dot. Nature 2008, 453, 633–637. 10.1038/nature06930. PubMed DOI
Esat T.; Lechtenberg B.; Deilmann T.; Wagner C.; Krüger P.; Temirov R.; Rohlfing M.; Anders F. B.; Tautz F. S. A Chemically Driven Quantum Phase Transition in a Two-Molecule Kondo System. Nat. Phys. 2016, 12, 867–873. 10.1038/nphys3737. DOI
Serwatka T.; Melko R. G.; Burkov A.; Roy P.-N. Quantum Phase Transition in the One-Dimensional Water Chain. Phys. Rev. Lett. 2023, 130, 02620110.1103/PhysRevLett.130.026201. PubMed DOI
Wang F.; Shen W.; Shui Y.; Chen J.; Wang H.; Wang R.; Qin Y.; Wang X.; Wan J.; Zhang M.; Lu X.; Yang T.; Song F. Electrically Controlled Nonvolatile Switching of Single-Atom Magnetism in a Dy@C84 Single-Molecule Transistor. Nat. Commun. 2024, 15, 245010.1038/s41467-024-46854-z. PubMed DOI PMC
Meden V. The Anderson-Josephson Quantum Dot-a Theory Perspective. J. Phys.: Condens. Matter 2019, 31, 16300110.1088/1361-648X/aafd6a. PubMed DOI
Luitz D. J.; Assaad F. F.; Novotný T.; Karrasch C.; Meden V. Understanding the Josephson Current Through a Kondo-Correlated Quantum Dot. Phys. Rev. Lett. 2012, 108, 22700110.1103/PhysRevLett.108.227001. PubMed DOI
Kadlecová A.; Žonda M.; Pokorný V.; Novotný T. Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions. Phys. Rev. Appl. 2019, 11, 04409410.1103/PhysRevApplied.11.044094. DOI
Žitko R.NRG Ljubljana. 202110.5281/zenodo.4841076. DOI
Žonda M.; Stetsovych O.; Korytár R.; Ternes M.; Temirov R.; Raccanelli A.; Tautz F. S.; Jelínek P.; Novotný T.; Švec M. Resolving Ambiguity of the Kondo Temperature Determination in Mechanically Tunable Single-Molecule Kondo Systems. J. Phys. Chem. Lett. 2021, 12, 6320–6325. 10.1021/acs.jpclett.1c01544. PubMed DOI
Eickhoff F.; Lechtenberg B.; Anders F. B. Effective Low-Energy Description of the Two-Impurity Anderson Model: RKKY Interaction and Quantum Criticality. Phys. Rev. B 2018, 98, 11510310.1103/PhysRevB.98.115103. DOI
Yao N. Y.; Moca C. P.; Weymann I.; Sau J. D.; Lukin M. D.; Demler E. A.; Zaránd G. Phase Diagram and Excitations of a Shiba Molecule. Phys. Rev. B 2014, 90, 24110810.1103/PhysRevB.90.241108. DOI
Zalom P.; Wrześniewski K.; Novotný T.; Weymann I. Double Quantum Dot Andreev Molecules: Phase Diagrams and Critical Evaluation of Effective Models. Phys. Rev. B 2024, 110, 13450610.1103/PhysRevB.110.134506. DOI
Žitko R.; Bonča J. Multiple-Impurity Anderson Model for Quantum Dots Coupled in Parallel. Phys. Rev. B 2006, 74, 04531210.1103/PhysRevB.74.045312. DOI
Žonda M.; Zalom P.; Novotný T.; Loukeris G.; Bätge J.; Pokorný V. Generalized Atomic Limit of a Double Quantum Dot Coupled to Superconducting Leads. Phys. Rev. B 2023, 107, 11540710.1103/PhysRevB.107.115407. DOI
Hoffman S.; Klinovaja J.; Meng T.; Loss D. Impurity-Induced Quantum Phase Transitions and Magnetic Order in Conventional Superconductors: Competition Between Bound and Quasiparticle States. Phys. Rev. B 2015, 92, 12542210.1103/PhysRevB.92.125422. DOI
Fernández-Torrente I.; Kreikemeyer-Lorenzo D.; Stróżecka A.; Franke K. J.; Pascual J. I. Gating the Charge State of Single Molecules by Local Electric Fields. Phys. Rev. Lett. 2012, 108, 03680110.1103/PhysRevLett.108.036801. PubMed DOI
Island J. O.; Gaudenzi R.; de Bruijckere J.; Burzurí E.; Franco C.; Mas-Torrent M.; Rovira C.; Veciana J.; Klapwijk T. M.; Aguado R.; van der Zant H. S. J. Proximity-Induced Shiba States in a Molecular Junction. Phys. Rev. Lett. 2017, 118, 11700110.1103/PhysRevLett.118.117001. PubMed DOI
Zhou P.; Aschauer U.; Decurtins S.; Feurer T.; Häner R.; Liu S.-X. Effect of Tert-Butyl Groups on Electronic Communication Between Redox Units in Tetrathiafulvalene-Tetraazapyrene Triads. Chem. Commun. 2021, 57, 12972–12975. 10.1039/D1CC05671A. PubMed DOI PMC
Liu J.; Li C.; Liu X.; Lu Y.; Xiang F.; Qiao X.; Cai Y.; Wang Z.; Liu S.; Wang L. Positioning and Switching Phthalocyanine Molecules on a Cu(100) Surface at Room Temperature. ACS Nano 2014, 8, 12734–12740. 10.1021/nn5058535. PubMed DOI
Li C.; Wang Z.; Lu Y.; Liu X.; Wang L. Conformation-Based Signal Transfer and Processing at the Single-Molecule Level. Nat. Nanotechnol. 2017, 12, 1071–1076. 10.1038/nnano.2017.179. PubMed DOI
Balasubramani S. G.; Chen G. P.; Coriani S.; Diedenhofen M.; Frank M. S.; Franzke Y. J.; Furche F.; Grotjahn R.; Harding M. E.; et al. TURBOMOLE: Modular Program Suite for Ab Initio Quantum-Chemical and Condensed-Matter Simulations. J. Chem. Phys. 2020, 152 (18), 18410710.1063/5.0004635. PubMed DOI PMC
Jarrell M.; Gubernatis J. Bayesian Inference and the Analytic Continuation of Imaginary-Time Quantum Monte Carlo Data. Phys. Rep. 1996, 269, 133–195. 10.1016/0370-1573(95)00074-7. DOI
Kaufmann J.; Held K. ana_cont: Python Package for Analytic Continuation. Comput. Phys. Commun. 2023, 282, 10851910.1016/j.cpc.2022.108519. DOI
Bergeron D.; Tremblay A.-M. S. Algorithms for Optimized Maximum Entropy and Diagnostic Tools for Analytic Continuation. Phys. Rev. E 2016, 94, 02330310.1103/PhysRevE.94.023303. PubMed DOI
Hewson A. C.The Kondo Problem to Heavy Fermions; Cambridge Studies in Magnetism; Cambridge University Press, 1993.
Žitko R. Kondo Resonance Lineshape of Magnetic Adatoms on Decoupling Layers. Phys. Rev. B 2011, 84, 19511610.1103/PhysRevB.84.195116. DOI
Turco E.; Aapro M.; Ganguli S. C.; Krane N.; Drost R.; Sobrino N.; Bernhardt A.; Juríček M.; Fasel R.; Ruffieux P.; Liljeroth P.; Jacob D. Demonstrating Kondo Behavior by Temperature-Dependent Scanning Tunneling Spectroscopy. Phys. Rev. Res. 2024, 6, L02206110.1103/PhysRevResearch.6.L022061. DOI
Frota H. O.; Oliveira L. N. Photoemission Spectroscopy for the Spin-Degenerate Anderson Model. Phys. Rev. B 1986, 33, 7871–7874. 10.1103/PhysRevB.33.7871. PubMed DOI
Li C.SPM Images and dI/dV Data for Nanoscale Control of Quantum States in Radical Molecules on Superconducting Pb(111). 202410.5281/zenodo.14052974. DOI
Li C.; Pokorný V.; Žonda M.; Liu J.-C.; Zhou P.; Chahib O.; Glatzel T.; Häner R.; Decurtins S.; Liu S.-X.; Pawlak R.; Meyer E.. Nanoscale Control of Quantum States in Radical Molecules on Superconducting Pb(111). arXiv (Condensed Matter) 9 August 2024, 2408.05115, Ver. 1. https://arxiv.org/abs/2408.05115. (accessed December 5, 2024).