Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
26191073
PubMed Central
PMC4488758
DOI
10.3389/fgene.2015.00228
Knihovny.cz E-resources
- Keywords
- Pax258, Pax6, alternative splicing, paired domain, splice variants,
- Publication type
- Journal Article MeSH
Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7, and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordates and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a) mRNA isoform. As shown in our analysis, this splicing event is characteristic of Gnathostomata and is absent in the other chordate subphyla. Moreover, expression pattern of alternative spliced variants was compared between cephalochordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.
See more in PubMed
Arseneau J. R., Laflamme M., Lewis S. M., Maïcas E., Ouellette R. J. (2009). Multiple isoforms of PAX5 are expressed in both lymphomas and normal B-cells. Br. J. Haematol. 147, 328–338. 10.1111/j.1365-2141.2009.07859.x PubMed DOI
Azuma N., Tadokoro K., Asaka A., Yamada M., Yamaguchi Y., Handa H., et al. . (2005). The Pax6 isoform bearing an alternative spliced exon promotes the development of the neural retinal structure. Hum. Mol. Genet. 14, 735–745. 10.1093/hmg/ddi069 PubMed DOI
Bassham S., Canestro C., Postlethwait J. (2008). Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. BMC Biol. 6:35. 10.1186/1741-7007-6-35 PubMed DOI PMC
Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., et al. . (2013). GenBank. Nucleic Acids Res. 41, D36–D42. 10.1093/nar/gks1195 PubMed DOI PMC
Bergthorsson U., Andersson D. I., Roth J. R. (2007). Ohno's dilemma: evolution of new genes under continuous selection. Proc. Natl. Acad. Sci. U.S.A. 104, 17004–17009. 10.1073/pnas.0707158104 PubMed DOI PMC
Bhatia S., Monahan J., Ravi V., Gautier P., Murdoch E., Brenner S., et al. . (2014). A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Dev. Biol. 387, 214–228. 10.1016/j.ydbio.2014.01.007 PubMed DOI
Blake J. A., Ziman M. R. (2014). Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 141, 737–751. 10.1242/dev.091785 PubMed DOI
Bopp D., Jamet E., Baumgartner S., Burri M., Noll M. (1989). Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro. EMBO J. 8, 3447–3457. PubMed PMC
Borson N. D., Lacy M. Q., Wettstein P. J. (2002). Altered mRNA expression of Pax5 and Blimp-1 in B cells in multiple myeloma. Blood 100, 4629–4639. 10.1182/blood.V100.13.4629 PubMed DOI
Breitling R., Gerber J. K. (2000). Origin of the paired domain. Dev. Genes Evol. 210, 644–650. 10.1007/s004270000106 PubMed DOI
Burge C., Karlin S. (1997). Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94. 10.1006/jmbi.1997.0951 PubMed DOI
Busse A., Rietz A., Schwartz S., Thiel E., Keilholz U. (2009). An intron 9 containing splice variant of PAX2. J. Transl. Med. 7:36. 10.1186/1479-5876-7-36 PubMed DOI PMC
Cameron R. A., Samanta M., Yuan A., He D., Davidson E. (2009). SpBase: the sea urchin genome database and web site. Nucleic Acids Res. 37, D750–D754. 10.1093/nar/gkn887 PubMed DOI PMC
Canestro C., Bassham S., Postlethwait J. (2005). Development of the central nervous system in the larvacean Oikopleura dioica and the evolution of the chordate brain. Dev. Biol. 285, 298–315. 10.1016/j.ydbio.2005.06.039 PubMed DOI
Chen L., Tovar-Corona J. M., Urrutia A. O. (2012). Alternative splicing: a potential source of functional innovation in the eukaryotic genome. Int. J. Evol. Biol. 2012:596274. 10.1155/2012/596274 PubMed DOI PMC
Chi N., Epstein J. A. (2002). Getting your pax straight: pax proteins in development and disease. Trends Genet. 18, 41–47. 10.1016/S0168-9525(01)02594-X PubMed DOI
Chisholm A. D., Horvitz H. R. (1995). Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature 377, 52–55. 10.1038/377052a0 PubMed DOI
Cinar H. N., Chisholm A. D. (2004). Genetic Analysis of the Caenorhabditis elegans pax-6 Locus: roles of paired domain-containing and nonpaired domain-containing isoforms. Genetics 168, 1307–1322. 10.1534/genetics.104.031724 PubMed DOI PMC
Cunningham F., Amode M. R., Barrell D., Beal K., Billis K., Brent S., et al. . (2015). Ensembl 2015. Nucleic Acids Res. 43, D662–D669. 10.1093/nar/gku1010 PubMed DOI PMC
Czerny T., Schaffner G., Busslinger M. (1993). DNA sequence recognition by pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061. 10.1101/gad.7.10.2048 PubMed DOI
De Castro E., Sigrist C. J. A., Gattiker A., Bulliard V., Langendijk-Genevaux P. S., Gasteiger E., et al. . (2006). ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365. 10.1093/nar/gkl124 PubMed DOI PMC
Dressler G. R., Deutsch U., Chowdhury K., Nornes H. O., Gruss P. (1990). Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795. PubMed
Eberhard D., Jimenez G., Heavey B., Busslinger M. (2000). Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303. 10.1093/emboj/19.10.2292 PubMed DOI PMC
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Epstein D. J., Vekemans M., Gros P. (1991). Splotch (sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774. 10.1016/0092-8674(91)90071-6 PubMed DOI
Epstein J. A., Glaser T., Cai J., Jepeal L., Walton D. S., Maas R. L. (1994). Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 8, 2022–2034. 10.1101/gad.8.17.2022 PubMed DOI
Escriva H., Manzon L., Youson J., Laudet V. (2002). Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution. Mol. Biol. Evol. 19, 1440–1450. 10.1093/oxfordjournals.molbev.a004207 PubMed DOI
Fletcher J., Hu M., Berman Y., Collins F., Grigg J., Mciver M., et al. . (2005). Multicystic Dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J. Am. Soc. Nephrol. 16, 2754–2761. 10.1681/ASN.2005030239 PubMed DOI
Friedrich M., Caravas J. (2011). New insights from hemichordate genomes: prebilaterian origin and parallel modifications in the paired domain of the pax gene eyegone. J. Exp. Zool. B Mol. Dev. Evol. 316, 387–392. 10.1002/jez.b.21412 PubMed DOI
Fu W., Noll M. (1997). The Pax2 homolog sparkling is required for development of cone and pigment cells in the Drosophila eye. Genes Dev. 11, 2066–2078. 10.1101/gad.11.16.2066 PubMed DOI PMC
Fuentes M., Benito E., Bertrand S., Paris M., Mignardot A., Godoy L., et al. . (2007). Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J. Exp. Zool. B Mol. Dev. Evol. 308, 484–493. 10.1002/jez.b.21179 PubMed DOI
Gehring W. J. (1996). The master control gene for morphogenesis and evolution of the eye. Genes Cells 1, 11–15. 10.1046/j.1365-2443.1996.11011.x PubMed DOI
Gehring W. J. (2002). The genetic control of eye development and its implications for the evolution of the various eye-types. Int. J. Dev. Biol. 46, 65–73. PubMed
Gehring W. J. (2012). The evolution of vision. Wiley Interdiscip. Rev. Dev. Biol. 3, 1–40. 10.1002/wdev.96 PubMed DOI
Glardon S., Holland L. Z., Gehring W. J., Holland N. D. (1998). Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125, 2701–2710. PubMed
Glaser T., Walton D. S., Maas R. L. (1992). Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 2, 232–239. 10.1038/ng1192-232 PubMed DOI
Green R. E., Lewis B. P., Hillman R. T., Blanchette M., Lareau L. F., Garnett A. T., et al. . (2003). Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 19(Suppl. 1), i118–i121. 10.1093/bioinformatics/btg1015 PubMed DOI
Grigoriev I. V., Nordberg H., Shabalov I., Aerts A., Cantor M., Goodstein D., et al. . (2012). The genome portal of the department of energy joint Genome Institute. Nucleic Acids Res. 40, D26–D32. 10.1093/nar/gkr947 PubMed DOI PMC
Hartung F., Blattner F. R., Puchta H. (2002). Intron gain and loss in the evolution of the conserved eukaryotic recombination machinery. Nucleic Acids Res. 30, 5175–5181. 10.1093/nar/gkf649 PubMed DOI PMC
Heller N., Brandli A. W. (1997). Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. Mech. Dev. 69, 83–104. 10.1016/S0925-4773(97)00158-5 PubMed DOI
Heller N., Brandli A. W. (1999). Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev. Genet. 24, 208–219. 10.1002/(sici)1520-6408(1999)24:3/4<208::aid-dvg4>3.0.co;2-j PubMed DOI
Hill A., Boll W., Ries C., Warner L., Osswalt M., Hill M., et al. . (2010). Origin of Pax and Six gene families in sponges: single PaxB and Six1/2 orthologs in Chalinula loosanoffi. Dev. Biol. 343, 106–123. 10.1016/j.ydbio.2010.03.010 PubMed DOI
Holland L. Z., Short S. (2010). Alternative splicing in development and function of chordate endocrine systems: a focus on Pax genes. Integr. Comp. Biol. 50, 22–34. 10.1093/icb/icq048 PubMed DOI
Holland L. Z., Yu J. K. (2004). Cephalochordate (amphioxus) embryos: procurement, culture, and basic methods. Methods Cell. Biol. 74, 195–215. 10.1016/S0091-679X(04)74009-1 PubMed DOI
Hoshiyama D., Iwabe N., Miyata T. (2007). Evolution of the gene families forming the Pax/Six regulatory network: isolation of genes from primitive animals and molecular phylogenetic analyses. FEBS Lett. 581, 1639–1643. 10.1016/j.febslet.2007.03.027 PubMed DOI
Howard-Ashby M., Materna S. C., Brown C. T., Chen L., Cameron R. A., Davidson E. H. (2006). Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev. Biol. 300, 74–89. 10.1016/j.ydbio.2006.08.039 PubMed DOI
Irvine S. Q., Fonseca V. C., Zompa M. A., Antony R. (2008). Cis-regulatory organization of the Pax6 gene in the ascidian Ciona intestinalis. Dev. Biol. 317, 649–659. 10.1016/j.ydbio.2008.01.036 PubMed DOI PMC
Iwamatsu T. (2004). Stages of normal development in the medaka Oryzias latipes. Mech. Dev. 121, 605–618. 10.1016/j.mod.2004.03.012 PubMed DOI
Jaillon O., Aury J. M., Brunet F., Petit J. L., Stange-Thomann N., Mauceli E., et al. . (2004). Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946–957. 10.1038/nature03025 PubMed DOI
Jeffares D. C., Mourier T., Penny D. (2006). The biology of intron gain and loss. Trends Genet. 22, 16–22. 10.1016/j.tig.2005.10.006 PubMed DOI
Karolchik D., Barber G. P., Casper J., Clawson H., Cline M. S., Diekhans M., et al. . (2014). The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 42, D764–D770. 10.1093/nar/gkt1168 PubMed DOI PMC
Kelemen O., Convertini P., Zhang Z., Wen Y., Shen M., Falaleeva M., et al. . (2013). Function of alternative splicing. Gene 514, 1–30. 10.1016/j.gene.2012.07.083 PubMed DOI PMC
Kimmel C. B., Ballard W. W., Kimmel S. R., Ullmann B., Schilling T. F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310. 10.1002/aja.1002030302 PubMed DOI
Kleinjan D. A., Bancewicz R. M., Gautier P., Dahm R., Schonthaler H. B., Damante G., et al. . (2008). Subfunctionalization of duplicated zebrafish pax6 genes by cis-regulatory divergence. PLoS Genet. 4:e29. 10.1371/journal.pgen.0040029 PubMed DOI PMC
Klimova L., Kozmik Z. (2014). Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 141, 1292–1302. 10.1242/dev.098822 PubMed DOI
Koralewski T. E., Krutovsky K. V. (2011). Evolution of exon-intron structure and alternative splicing. PLoS ONE 6:e18055. 10.1371/journal.pone.0018055 PubMed DOI PMC
Kozmik Z., Czerny T., Busslinger M. (1997). Alternatively spliced insertions in the paired domain restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J. 16, 6793–6803. 10.1093/emboj/16.22.6793 PubMed DOI PMC
Kozmik Z., Daube M., Frei E., Norman B., Kos L., Dishaw L. J., et al. . (2003). Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev. Cell. 5, 773–785. 10.1016/S1534-5807(03)00325-3 PubMed DOI
Kozmik Z., Holland N. D., Kalousova A., Paces J., Schubert M., Holland L. Z. (1999). Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126, 1295–1304. PubMed
Kozmik Z., Kurzbauer R., Dorfler P., Busslinger M. (1993). Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties. Mol. Cell. Biol. 13, 6024–6035. 10.1128/MCB.13.10.6024 PubMed DOI PMC
Kozmik Z. (2008). The role of Pax genes in eye evolution. Brain Res. Bull. 75, 335–339. 10.1016/j.brainresbull.2007.10.046 PubMed DOI
Krauss S., Johansen T., Korzh V., Fjose A. (1991). Expression of the zebrafish paired box gene pax[zf-b] during early neurogenesis. Development 113, 1193–1206. PubMed
Kreslova J., Holland L. Z., Schubert M., Burgtorf C., Benes V., Kozmik Z. (2002). Functional equivalency of amphioxus and vertebrate Pax258 transcription factors suggests that the activation of mid-hindbrain specific genes in vertebrates occurs via the recruitment of Pax regulatory elements. Gene 282, 143–150. 10.1016/S0378-1119(01)00840-X PubMed DOI
Kwak S. J., Vemaraju S., Moorman S. J., Zeddies D., Popper A. N., Riley B. B. (2006). Zebrafish pax5 regulates development of the utricular macula and vestibular function. Dev. Dyn. 235, 3026–3038. 10.1002/dvdy.20961 PubMed DOI
Lang D., Powell S. K., Plummer R. S., Young K. P., Ruggeri B. A. (2007). PAX genes: roles in development, pathophysiology, and cancer. Biochem. Pharmacol. 73, 1–14. 10.1016/j.bcp.2006.06.024 PubMed DOI
Lewis B. P., Green R. E., Brenner S. E. (2003). Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. U.S.A 100, 189–192. 10.1073/pnas.0136770100 PubMed DOI PMC
Louis A., Muffato M., Roest Crollius H. (2013). Genomicus: five genome browsers for comparative genomics in eukaryota. Nucleic Acids Res. 41, D700–D705. 10.1093/nar/gks1156 PubMed DOI PMC
Lun K., Brand M. (1998). A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125, 3049–3062. PubMed
Maere S., Van De Peer Y. (2010). Duplicate retention after small- and large-scale duplications, in Evolution after Gene Duplication, eds Dittmar K., Liberles D. (Hoboken, NJ: John Wiley & Sons, Inc; ), 31–56.
Nilsen T. W., Graveley B. R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463. 10.1038/nature08909 PubMed DOI PMC
Noll M. (1993). Evolution and role of Pax genes. Curr. Opin. Genet. Dev. 3, 595–605. 10.1016/0959-437X(93)90095-7 PubMed DOI
Nornes S., Mikkola I., Krauss S., Delghandi M., Perander M., Johansen T. (1996). Zebrafish Pax9 encodes two proteins with distinct C-terminal transactivating domains of different potency negatively regulated by adjacent N-terminal sequences. J. Biol. Chem. 271, 26914–26923. 10.1074/jbc.271.43.26914 PubMed DOI
Paixao-Cortes V. R., Salzano F. M., Bortolini M. C. (2013). Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family. PLoS ONE 8:e73560. 10.1371/journal.pone.0073560 PubMed DOI PMC
Pfeffer P. L., Gerster T., Lun K., Brand M., Busslinger M. (1998). Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125, 3063–3074. PubMed
Poleev A., Wendler F., Fickenscher H., Zannini M. S., Yaginuma K., Abbott C., et al. . (1995). Distinct functional properties of three human paired-box-protein, PAX8, isoforms generated by alternative splicing in thyroid, kidney and Wilms' tumors. Eur. J. Biochem. 228, 899–911. 10.1111/j.1432-1033.1995.0899m.x PubMed DOI
Puschel A. W., Gruss P., Westerfield M. (1992). Sequence and expression pattern of pax-6 are highly conserved between zebrafish and mice. Development 114, 643–651. PubMed
Putnam N. H., Butts T., Ferrier D. E., Furlong R. F., Hellsten U., Kawashima T., et al. . (2008). The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064–1071. 10.1038/nature06967 PubMed DOI
Ravi V., Bhatia S., Gautier P., Loosli F., Tay B. H., Tay A., et al. . (2013). Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLoS Genet. 9:e1003177. 10.1371/journal.pgen.1003177 PubMed DOI PMC
Reese M. G., Eeckman F. H., Kulp D., Haussler D. (1997). Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323. 10.1089/cmb.1997.4.311 PubMed DOI
Rice P., Longden I., Bleasby A. (2000). EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277. 10.1016/S0168-9525(00)02024-2 PubMed DOI
Robichaud G. A., Nardini M., Laflamme M., Cuperlovic-Culf M., Ouellette R. J. (2004). Human Pax-5 C-terminal isoforms possess distinct transactivation properties and are differentially modulated in normal and malignant B cells. J. Biol. Chem. 279, 49956–49963. 10.1074/jbc.M407171200 PubMed DOI
Rogozin I. B., Wolf Y. I., Sorokin A. V., Mirkin B. G., Koonin E. V. (2003). Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512–1517. 10.1016/S0960-9822(03)00558-X PubMed DOI
Schimmenti L. A., Cunliffe H. E., Mcnoe L. A., Ward T. A., French M. C., Shim H. H., et al. . (1997). Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am. J. Hum. Genet. 60, 869–878. PubMed PMC
Schwartz S., Zhang Z., Frazer K. A., Smit A., Riemer C., Bouck J., et al. . (2000). PipMaker–a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586. 10.1101/gr.10.4.577 PubMed DOI PMC
Short S., Holland L. Z. (2008). The evolution of alternative splicing in the Pax family: the view from the Basal chordate amphioxus. J. Mol. Evol. 66, 605–620. 10.1007/s00239-008-9113-5 PubMed DOI
Short S., Kozmik Z., Holland L. Z. (2012). The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: revealing divergence at the invertebrate to vertebrate transition. J. Exp. Zool. B Mol. Dev. Evol. 318, 555–571. 10.1002/jez.b.22460 PubMed DOI
Stephens R. M., Schneider T. D. (1992). Features of spliceosome evolution and function inferred from an analysis of the information at human splice sites. J. Mol. Biol. 228, 1124–1136. 10.1016/0022-2836(92)90320-J PubMed DOI
Stuart E. T., Kioussi C., Gruss P. (1994). Mammalian Pax genes. Annu. Rev. Genet. 28, 219–236. 10.1146/annurev.ge.28.120194.001251 PubMed DOI
Takatori N., Butts T., Candiani S., Pestarino M., Ferrier D. K., Saiga H., et al. . (2008). Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Dev. Genes Evol 218, 579–590. 10.1007/s00427-008-0245-9 PubMed DOI
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC
Tavassoli K., Ruger W., Horst J. (1997). Alternative splicing in PAX2 generates a new reading frame and an extended conserved coding region at the carboxy terminus. Hum. Genet. 101, 371–375. 10.1007/s004390050644 PubMed DOI
Van De Peer Y. (2004). Tetraodon genome confirms Takifugu findings: most fish are ancient polyploids. Genome Biol. 5:250. 10.1186/gb-2004-5-12-250 PubMed DOI PMC
Wada S., Tokuoka M., Shoguchi E., Kobayashi K., Di Gregorio A., Spagnuolo A., et al. (2003). A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Dev. Genes Evol. 213, 222–234. 10.1007/s00427-003-0321-0 PubMed DOI
Walther C., Gruss P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449. PubMed
Wang E. T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., et al. . (2008a). Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476. 10.1038/nature07509 PubMed DOI PMC
Wang Q., Fang W. H., Krupinski J., Kumar S., Slevin M., Kumar P. (2008b). Pax genes in embryogenesis and oncogenesis. J. Cell. Mol. Med. 12, 2281–2294. 10.1111/j.1582-4934.2008.00427.x PubMed DOI PMC
Ward T. A., Nebel A., Reeve A. E., Eccles M. R. (1994). Alternative messenger RNA forms and open reading frames within an additional conserved region of the human PAX-2 gene. Cell Growth Differ. 5, 1015–1021. PubMed
Xu H. E., Rould M. A., Xu W., Epstein J. A., Maas R. L., Pabo C. O. (1999). Crystal structure of the human Pax6 paired domain–DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Dev 13, 1263–1275. 10.1101/gad.13.10.1263 PubMed DOI PMC
Xu W., Rould M. A., Jun S., Desplan C., Pabo C. O. (1995). Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell 80, 639–650. 10.1016/0092-8674(95)90518-9 PubMed DOI
Zwollo P., Arrieta H., Ede K., Molinder K., Desiderio S., Pollock R. (1997). The Pax-5 gene is alternatively spliced during B-cell development. J. Biol. Chem. 272, 10160–10168. 10.1074/jbc.272.15.10160 PubMed DOI
vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish?