Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn's disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact

. 2015 Jul 24 ; 6 (1) : 137. [epub] 20150724

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26206376
Odkazy

PubMed 26206376
PubMed Central PMC4529692
DOI 10.1186/s13287-015-0122-1
PII: 10.1186/s13287-015-0122-1
Knihovny.cz E-zdroje

INTRODUCTION: Crohn's disease (CD) is a disabling chronic enteropathy sustained by a harmful T-cell response toward antigens of the gut microbiota in genetically susceptible subjects. Growing evidence highlights the safety and possible efficacy of mesenchymal stem cells (MSCs) as a new therapeutic tool for this condition. Therefore, we aimed to investigate the effects of bone marrow-derived MSCs on pathogenic T cells with a view to clinical application. METHODS: T-cell lines from both inflamed and non-inflamed colonic mucosal specimens of CD patients and from healthy mucosa of control subjects were grown with the antigen muramyl-dipeptide in the absence or presence of donors' MSCs. The MSC effects were evaluated in terms of T-cell viability, apoptotic rate, proliferative response, immunophenotype, and cytokine profile. The role of the indoleamine 2,3-dioxygenase (IDO) was established by adding a specific inhibitor, the 1-methyl-DL-tryptophan, and by using MSCs transfected with the small interfering RNA (siRNA) targeting IDO. The relevance of cell-cell contact was evaluated by applying transwell membranes. RESULTS: A significant reduction in both cell viability and proliferative response to muramyl-dipeptide, with simultaneous increase in the apoptotic rate, was found in T cells from both inflamed and non-inflamed CD mucosa when co-cultured with MSCs and was reverted by inhibiting IDO activity and expression. A reduction of the activated CD4(+)CD25(+) subset and increase of the CD3(+)CD69(+) population were also observed when T-cell lines from CD mucosa were co-cultured with MSCs. In parallel, an inhibitory effect was evident on the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interferon-γ, interleukin-17A and -21, whereas that of the transforming growth factor-β and interleukin-6 were increased, and production of the tolerogenic molecule soluble HLA-G was high. These latter effects were almost completely eliminated by blocking the IDO, whose activity was upregulated in MSCs co-cultured with CD T cells. The use of a semipermeable membrane partially inhibited the MSC immunosuppressive effects. Finally, hardly any effects of MSCs were observed when T cells obtained from control subjects were used. CONCLUSION: MSCs exert potent immunomodulant effects on antigen-specific T cells in CD through a complex paracrine and cell-cell contact-mediated action, which may be exploited for widespread therapeutic use.

Centre for the Study and Cure of Inflammatory Bowel Disease Clinica Medica 1 IRCCS San Matteo Hospital Foundation University of Pavia Piazzale Golgi 19 Pavia 27100 Italy

Centro di Ricerca di Medicina Rigenerativa Fondazione IRCCS Policlinico San Matteo Piazzale Golgi 19 Pavia 27100 Italy

Chirurgia Generale 1 Fondazione IRCCS Policlinico San Matteo Università di Pavia Piazzale Golgi 19 Pavia 27100 Italy

Clinica Medica 1 Dipartimento di Medicina Interna Fondazione IRCCS Policlinico San Matteo Università di Pavia Piazzale Golgi 19 Pavia 27100 Italy

Clinica Medica 3 Dipartimento di Medicina Interna Fondazione IRCCS Policlinico San Matteo Università di Pavia Piazzale Golgi 19 Pavia 27100 Italy

Dipartimento di Medicina Molecolare Centro di Ingegneria Tissutale INSTM UdR Pavia Università di Pavia Pavia 27100 Italy

Dipartimento di Medicina Occupazionale Ergonomia e Disabilità Laboratorio di Nanotecnologia Fondazione IRCCS Salvatore Maugeri Università di Pavia Via Maugeri 8 10 Pavia 27100 Italy

Dipartimento di Onco Ematologia Pediatrica e Medicina Trasfusionale Ospedale Pediatrico Bambino Gesù Via Sant'Onofrio 4 Rome 00165 Italy

International Clinical Research Center St Anne's University Hospital and Masaryk University Pekarska 53 Brno 656 91 Czech Republic

Laboratori di Oncoematologia Pediatrica Fondazione IRCCS Policlinico San Matteo Piazzale Golgi 19 Pavia 27100 Italy

Laboratorio di Ematologia Fondazione IRCCS Policlinico San Matteo Piazzale Golgi 19 Pavia 27100 Italy

Servizio di Immunogenetica Immunoematologia e Medicina Trasfusionale Fondazione IRCCS Policlinico San Matteo Università di Pavia Piazzale Golgi 19 Pavia 27100 Italy

Zobrazit více v PubMed

Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62:1505–10. doi: 10.1136/gutjnl-2012-303954. PubMed DOI PMC

Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605. doi: 10.1016/S0140-6736(12)60026-9. PubMed DOI

Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61:918–32. doi: 10.1136/gutjnl-2011-300904. PubMed DOI

Singh UP, Singh NP, Singh B, Mishra MK, Nagarkatti M, Nagarkatti PS, et al. Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci. 2010;2:993–1008. doi: 10.2741/S115. PubMed DOI PMC

Bernardo ME, Fibbe WE. Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann NY Acad Sci. 2012;1266:107–17. doi: 10.1111/j.1749-6632.2012.06667.x. PubMed DOI

De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12:574–91. doi: 10.2174/156652412800619950. PubMed DOI

Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43. doi: 10.1182/blood.V99.10.3838. PubMed DOI

Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, et al. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology. 2004;41:469–76. PubMed

Prevosto C, Zancolli M, Carnevali P, Zocchi MR, Poggi A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica. 2007;92:881–8. doi: 10.3324/haematol.11240. PubMed DOI

Selleri S, Dieng MM, Nicoletti S, Louis I, Beausejour C, Le Deist F, et al. Cord-blood-derived mesenchymal stromal cells downmodulate CD4+ T-cell activation by inducing IL-10-producing Th1 cells. Stem Cells Dev. 2013;22:1063–75. doi: 10.1089/scd.2012.0315. PubMed DOI PMC

Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev. 2011;10:410–5. doi: 10.1016/j.autrev.2011.01.005. PubMed DOI

Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? Biomed Res Int. 2014;2014:216806. PubMed PMC

Molendijk I, Duijvestein M, van der Meulen-de Jong AE. Immunomodulatory effects of mesenchymal stromal cells in Crohn’s disease. J Allergy (Cairo). 2012;2012:187408. PubMed PMC

Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–9. doi: 10.1136/gut.2010.215152. PubMed DOI

Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut. 2012;61:468–9. doi: 10.1136/gutjnl-2011-300083. PubMed DOI

Forbes GM, Sturm MJ, Leong LW, Sparrow MP, Segarajasingam D, Cummins AG, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol. 2014;12:64–71. doi: 10.1016/j.cgh.2013.06.021. PubMed DOI

Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, et al. Autolougus bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60:788–98. doi: 10.1136/gut.2010.214841. PubMed DOI

García-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52:79–86. doi: 10.1007/DCR.0b013e3181973487. PubMed DOI

Lee WY, Park KJ, Cho YB, Yoon SN, Song KH, Kimdo S, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favourable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells. 2013;31:2575–81. doi: 10.1002/stem.1357. PubMed DOI

Mayer L, Pandak WM, Melmed GY, Hanauer SB, Johnson K, Payne D, et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant Crohn’s disease: a phase 1 study. Inflamm Bowel Dis. 2013;19:754–60. doi: 10.1097/MIB.0b013e31827f27df. PubMed DOI PMC

Salem M, Seidelin JB, Rogler G, Nielsen OH. Muramyl dipeptide responsive pathways in Crohn’s disease: from NOD2 and beyond. Cell Mol Life Sci. 2013;70:3391–404. doi: 10.1007/s00018-012-1246-4. PubMed DOI PMC

Van Assche G, Dignass A, Panes J, Beaugerie L, Karagiannis J, Allez M, et al. The second European evidence based Consensus on the diagnosis and management of Crohn’s disease: Definitions and diagnosis. J Crohn Colitis. 2010;4:7–27. doi: 10.1016/j.crohns.2009.12.003. PubMed DOI

Bernardo ME, Cometa AM, Pagliara D, Vinti L, Rossi F, Cristantielli R, et al. Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol. 2011;24:73–81. doi: 10.1016/j.beha.2010.11.002. PubMed DOI

Hviid TV, Hylenius S, Hoegh AM, Kruse C, Christiansen OB. HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens. 2002;60:122–32. doi: 10.1034/j.1399-0039.2002.600202.x. PubMed DOI

Hviid TV, Rizzo R, Christiansen OB, Melchiorri L, Lindhard A, Baricordi OR. HLA-G and IL-10 in serum in relation to HLA-G genotype and polymorphism. Immunogenetics. 2004;56:135–41. doi: 10.1007/s00251-004-0673-2. PubMed DOI

Kolte AM, Steffensen R, Nielsen HS, Hviid TV, Christiansen OB. Study of the structure and impact of human leukocyte antigen (HLA)-G-A, HLA-G-B, and HLA-G-DRB1 haplotypes in families with recurrent miscarriage. Hum Immunol. 2010;71:482–8. doi: 10.1016/j.humimm.2010.02.001. PubMed DOI

Hviid TV, Christiansen OB. Linkage disequilibrium between human leukocyte antigen (HLA) class II and HLA-G--possible implications for human reproduction and autoimmune disease. Hum Immunol. 2005;66:688–99. doi: 10.1016/j.humimm.2005.03.003. PubMed DOI

Di Sabatino A, Ciccocioppo R, Cinque B, Millimaggi D, Morera R, Ricevuti L, et al. Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn’s disease. Gut. 2004;53:70–7. doi: 10.1136/gut.53.1.70. PubMed DOI PMC

Ina K, Itoh J, Fukushima K, Kusugami K, Yamaguchi T, Kyokane K, et al. Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/Bax mucosal imbalance. J Immunol. 1999;163:1081–90. PubMed

Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem. 1997;43:2424–6. PubMed

Armitage P, Berry G. Statistical methods in medical research. 2nd edition. Edited by Blackwell Scientific Publications. Oxford, UK; 1987:276–336.

Mudter J, Neurath MF. Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut. 2007;56:293–303. doi: 10.1136/gut.2005.090464. PubMed DOI PMC

Abuzakouk M, Carton J, Feighery C, O’Donoghue DP, Weir DG, O’Farrelly C. CD4+ CD8+ and CD8alpha+ beta− T lymphocytes in human small intestinal lamina propria. Eur J Gastroenterol Hepatol. 1998;10:325–9. doi: 10.1097/00042737-199804000-00009. PubMed DOI

Berrih S, Gaud C, Bach MA, Le Brigand H, Binet JP, Bach JF. Evaluation of T cell subsets in myasthenia gravis using anti-T cell monoclonal antibodies. Clin Exp Immunol. 1981;45:1–8. PubMed PMC

De Maria A, Malnati M, Moretta A, Pende D, Bottino C, Casorati G, et al. CD3+ 4–8− WT31- (T cell receptor gamma+) cells and other unusual phenotypes are frequently detected among spontaneously interleukin 2-responsive T lymphocytes present in the joint fluid in juvenile rheumatoid arthritis. A clonal analysis. Eur J Immunol. 1987;17:1815–9. doi: 10.1002/eji.1830171221. PubMed DOI

Hirao J, Sugita K. Circulating CD4+CD8+ T lymphocytes in patients with Kawasaki disease. Clin Exp Immunol. 1998;111:397–401. doi: 10.1046/j.1365-2249.1998.00480.x. PubMed DOI PMC

Meisel R, Zibert A, Layrea L, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21. doi: 10.1182/blood-2003-11-3909. PubMed DOI

Gonzalez MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978–89. doi: 10.1053/j.gastro.2008.11.041. PubMed DOI

Tanaka F, Tominaga K, Ochi M, Tanigawa T, Watanabe T, Fujiwara Y, et al. Exogenous administration of mesenchymal stem cells ameliorates dextran sulphate-sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci. 2008;83:771–9. doi: 10.1016/j.lfs.2008.09.016. PubMed DOI

Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7. doi: 10.1182/blood-2004-09-3696. PubMed DOI

Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells. 2007;25:1753–60. doi: 10.1634/stemcells.2007-0068. PubMed DOI

Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol. 2011;33:593–602. doi: 10.1007/s00281-011-0267-7. PubMed DOI

Martin P, Gómez M, Larnana A, Cruz-Adalia A, Ramirez-Huesca M, Ursa MA, et al. CD69 association with Jak3/Stat5 proteins regulates TH17 cell differentiation. Mol Cell Biol. 2010;30:4877–89. doi: 10.1128/MCB.00456-10. PubMed DOI PMC

Radulovic K, Manta C, Rossini V, Holzmann K, Kestler HA, Wegenka UM, et al. CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J Immunol. 2012;188:2001–13. doi: 10.4049/jimmunol.1100765. PubMed DOI

Martin P, Sánchez-Madrid F. CD69: an unexpected regulator of TH17 cell-driven inflammatory responses. Sci Signal. 2011;4:pe14. PubMed

Ogino T, Nishimura J, Barman S, Kayama H, Uematsu S, Okuzaki D, et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease. Gastroenterology. 2013;145:1380–91. doi: 10.1053/j.gastro.2013.08.049. PubMed DOI

Waldner MJ, Neurath MF. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol. 2014;26:75–9. doi: 10.1016/j.smim.2013.12.003. PubMed DOI

Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, et al. Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macacafascicularis. Brain Res. 2010;1334:65–72. doi: 10.1016/j.brainres.2010.03.080. PubMed DOI

Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56:1175–86. doi: 10.1002/art.22511. PubMed DOI

Gonzalez MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60:1006–19. doi: 10.1002/art.24405. PubMed DOI

Pigneur B, Escher J, Elawad M, Lima R, Buderus S, Kierkus J, et al. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm Bowel Dis. 2013;19:2820–8. doi: 10.1097/01.MIB.0000435439.22484.d3. PubMed DOI

Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74. doi: 10.1016/0092-8674(93)80068-P. PubMed DOI

Kelsall B. Interleukin-10 in inflammatory bowel disease. N Engl J Med. 2009;361:2091–3. doi: 10.1056/NEJMe0909225. PubMed DOI

Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJ, Schreiber S, et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut. 2002;50:191–5. doi: 10.1136/gut.50.2.191. PubMed DOI PMC

Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-γ does not break but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149:353–63. doi: 10.1111/j.1365-2249.2007.03422.x. PubMed DOI PMC

Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFN-γ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846–57. doi: 10.1038/cr.2008.80. PubMed DOI

DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, et al. Requirement of IFN-γ-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A. 2009;15:2795–806. doi: 10.1089/ten.tea.2008.0630. PubMed DOI

Furuzawa-Carballeda J, Fonseca-Camarillo G, Lima G, Yamamoto-Furusho JK. Indoleamine 2,3-Dioxygenase: expressing cells in Inflammatory Bowel Disease - A Cross-Sectional Study. Clin Dev Immunol. 2013;2013:278035. doi: 10.1155/2013/278035. PubMed DOI PMC

Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, et al. Potential regulatory function of human dendritic cells expressing IDO. Science. 2002;297:1867–70. doi: 10.1126/science.1073514. PubMed DOI

Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90:1312–20. doi: 10.1097/TP.0b013e3181fed001. PubMed DOI

Rizzo R, Lanzoni G, Stignani M, Campioni D, Alviano F, Ricci F, et al. A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy. 2011;13:523–7. doi: 10.3109/14653249.2010.542460. PubMed DOI

Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human Leukocyte Antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26:212–22. doi: 10.1634/stemcells.2007-0554. PubMed DOI

Lopez AS, Alegre E, LeMaoult J, Carosella E, Gonzalez A. Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol. 2006;43:2151–60. doi: 10.1016/j.molimm.2006.01.007. PubMed DOI

Jones S, Horwood N, Cope A, Dazzi F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179:2824–31. doi: 10.4049/jimmunol.179.5.2824. PubMed DOI

Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;8:1954–62. doi: 10.1002/stem.118. PubMed DOI

Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. J Cell Physiol. 2008;214:588–94. doi: 10.1002/jcp.21244. PubMed DOI

Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 2003;10:228–41. doi: 10.1007/BF02256058. PubMed DOI

Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, et al. Inflammatory cytokine induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010;184:2321–8. doi: 10.4049/jimmunol.0902023. PubMed DOI PMC

Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50. doi: 10.1016/j.stem.2007.11.014. PubMed DOI

de Mare-Bredemeijer EL, Mancham S, Verstegen M, van Gent R, O’Neill DW, Tilanus HW, et al. Human graft-derived mesenchymal stromal cells potently suppress allo-reactive T-cell responses. Stem Cells Dev. 2015;24:1436–47. doi: 10.1089/scd.2014.0485. PubMed DOI

Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N, et al. Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr. 2007;13:217–26. doi: 10.3727/000000006780666957. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace