Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn's disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26206376
PubMed Central
PMC4529692
DOI
10.1186/s13287-015-0122-1
PII: 10.1186/s13287-015-0122-1
Knihovny.cz E-zdroje
- MeSH
- acetylmuramyl-alanyl-isoglutamin farmakologie MeSH
- antigeny povrchové metabolismus MeSH
- apoptóza účinky léků MeSH
- buňky kostní dřeně cytologie MeSH
- časosběrné zobrazování MeSH
- Crohnova nemoc patologie MeSH
- cytokiny metabolismus MeSH
- dospělí MeSH
- HLA-G antigeny metabolismus MeSH
- imunofenotypizace MeSH
- indolamin-2,3,-dioxygenasa antagonisté a inhibitory genetika metabolismus MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- mladiství MeSH
- mladý dospělý MeSH
- proliferace buněk účinky léků MeSH
- RNA interference MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- střevní sliznice cytologie MeSH
- T-lymfocyty cytologie účinky léků imunologie MeSH
- tryptofan analogy a deriváty farmakologie MeSH
- viabilita buněk MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-methyltryptophan MeSH Prohlížeč
- acetylmuramyl-alanyl-isoglutamin MeSH
- antigeny povrchové MeSH
- cytokiny MeSH
- HLA-G antigeny MeSH
- indolamin-2,3,-dioxygenasa MeSH
- malá interferující RNA MeSH
- tryptofan MeSH
INTRODUCTION: Crohn's disease (CD) is a disabling chronic enteropathy sustained by a harmful T-cell response toward antigens of the gut microbiota in genetically susceptible subjects. Growing evidence highlights the safety and possible efficacy of mesenchymal stem cells (MSCs) as a new therapeutic tool for this condition. Therefore, we aimed to investigate the effects of bone marrow-derived MSCs on pathogenic T cells with a view to clinical application. METHODS: T-cell lines from both inflamed and non-inflamed colonic mucosal specimens of CD patients and from healthy mucosa of control subjects were grown with the antigen muramyl-dipeptide in the absence or presence of donors' MSCs. The MSC effects were evaluated in terms of T-cell viability, apoptotic rate, proliferative response, immunophenotype, and cytokine profile. The role of the indoleamine 2,3-dioxygenase (IDO) was established by adding a specific inhibitor, the 1-methyl-DL-tryptophan, and by using MSCs transfected with the small interfering RNA (siRNA) targeting IDO. The relevance of cell-cell contact was evaluated by applying transwell membranes. RESULTS: A significant reduction in both cell viability and proliferative response to muramyl-dipeptide, with simultaneous increase in the apoptotic rate, was found in T cells from both inflamed and non-inflamed CD mucosa when co-cultured with MSCs and was reverted by inhibiting IDO activity and expression. A reduction of the activated CD4(+)CD25(+) subset and increase of the CD3(+)CD69(+) population were also observed when T-cell lines from CD mucosa were co-cultured with MSCs. In parallel, an inhibitory effect was evident on the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interferon-γ, interleukin-17A and -21, whereas that of the transforming growth factor-β and interleukin-6 were increased, and production of the tolerogenic molecule soluble HLA-G was high. These latter effects were almost completely eliminated by blocking the IDO, whose activity was upregulated in MSCs co-cultured with CD T cells. The use of a semipermeable membrane partially inhibited the MSC immunosuppressive effects. Finally, hardly any effects of MSCs were observed when T cells obtained from control subjects were used. CONCLUSION: MSCs exert potent immunomodulant effects on antigen-specific T cells in CD through a complex paracrine and cell-cell contact-mediated action, which may be exploited for widespread therapeutic use.
Zobrazit více v PubMed
Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62:1505–10. doi: 10.1136/gutjnl-2012-303954. PubMed DOI PMC
Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605. doi: 10.1016/S0140-6736(12)60026-9. PubMed DOI
Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61:918–32. doi: 10.1136/gutjnl-2011-300904. PubMed DOI
Singh UP, Singh NP, Singh B, Mishra MK, Nagarkatti M, Nagarkatti PS, et al. Stem cells as potential therapeutic targets for inflammatory bowel disease. Front Biosci. 2010;2:993–1008. doi: 10.2741/S115. PubMed DOI PMC
Bernardo ME, Fibbe WE. Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann NY Acad Sci. 2012;1266:107–17. doi: 10.1111/j.1749-6632.2012.06667.x. PubMed DOI
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12:574–91. doi: 10.2174/156652412800619950. PubMed DOI
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43. doi: 10.1182/blood.V99.10.3838. PubMed DOI
Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, et al. Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology. 2004;41:469–76. PubMed
Prevosto C, Zancolli M, Carnevali P, Zocchi MR, Poggi A. Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica. 2007;92:881–8. doi: 10.3324/haematol.11240. PubMed DOI
Selleri S, Dieng MM, Nicoletti S, Louis I, Beausejour C, Le Deist F, et al. Cord-blood-derived mesenchymal stromal cells downmodulate CD4+ T-cell activation by inducing IL-10-producing Th1 cells. Stem Cells Dev. 2013;22:1063–75. doi: 10.1089/scd.2012.0315. PubMed DOI PMC
Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev. 2011;10:410–5. doi: 10.1016/j.autrev.2011.01.005. PubMed DOI
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? Biomed Res Int. 2014;2014:216806. PubMed PMC
Molendijk I, Duijvestein M, van der Meulen-de Jong AE. Immunomodulatory effects of mesenchymal stromal cells in Crohn’s disease. J Allergy (Cairo). 2012;2012:187408. PubMed PMC
Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59:1662–9. doi: 10.1136/gut.2010.215152. PubMed DOI
Liang J, Zhang H, Wang D, Feng X, Wang H, Hua B, et al. Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut. 2012;61:468–9. doi: 10.1136/gutjnl-2011-300083. PubMed DOI
Forbes GM, Sturm MJ, Leong LW, Sparrow MP, Segarajasingam D, Cummins AG, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Clin Gastroenterol Hepatol. 2014;12:64–71. doi: 10.1016/j.cgh.2013.06.021. PubMed DOI
Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C, et al. Autolougus bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60:788–98. doi: 10.1136/gut.2010.214841. PubMed DOI
García-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, et al. Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum. 2009;52:79–86. doi: 10.1007/DCR.0b013e3181973487. PubMed DOI
Lee WY, Park KJ, Cho YB, Yoon SN, Song KH, Kimdo S, et al. Autologous adipose tissue-derived stem cells treatment demonstrated favourable and sustainable therapeutic effect for Crohn’s fistula. Stem Cells. 2013;31:2575–81. doi: 10.1002/stem.1357. PubMed DOI
Mayer L, Pandak WM, Melmed GY, Hanauer SB, Johnson K, Payne D, et al. Safety and tolerability of human placenta-derived cells (PDA001) in treatment-resistant Crohn’s disease: a phase 1 study. Inflamm Bowel Dis. 2013;19:754–60. doi: 10.1097/MIB.0b013e31827f27df. PubMed DOI PMC
Salem M, Seidelin JB, Rogler G, Nielsen OH. Muramyl dipeptide responsive pathways in Crohn’s disease: from NOD2 and beyond. Cell Mol Life Sci. 2013;70:3391–404. doi: 10.1007/s00018-012-1246-4. PubMed DOI PMC
Van Assche G, Dignass A, Panes J, Beaugerie L, Karagiannis J, Allez M, et al. The second European evidence based Consensus on the diagnosis and management of Crohn’s disease: Definitions and diagnosis. J Crohn Colitis. 2010;4:7–27. doi: 10.1016/j.crohns.2009.12.003. PubMed DOI
Bernardo ME, Cometa AM, Pagliara D, Vinti L, Rossi F, Cristantielli R, et al. Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol. 2011;24:73–81. doi: 10.1016/j.beha.2010.11.002. PubMed DOI
Hviid TV, Hylenius S, Hoegh AM, Kruse C, Christiansen OB. HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens. 2002;60:122–32. doi: 10.1034/j.1399-0039.2002.600202.x. PubMed DOI
Hviid TV, Rizzo R, Christiansen OB, Melchiorri L, Lindhard A, Baricordi OR. HLA-G and IL-10 in serum in relation to HLA-G genotype and polymorphism. Immunogenetics. 2004;56:135–41. doi: 10.1007/s00251-004-0673-2. PubMed DOI
Kolte AM, Steffensen R, Nielsen HS, Hviid TV, Christiansen OB. Study of the structure and impact of human leukocyte antigen (HLA)-G-A, HLA-G-B, and HLA-G-DRB1 haplotypes in families with recurrent miscarriage. Hum Immunol. 2010;71:482–8. doi: 10.1016/j.humimm.2010.02.001. PubMed DOI
Hviid TV, Christiansen OB. Linkage disequilibrium between human leukocyte antigen (HLA) class II and HLA-G--possible implications for human reproduction and autoimmune disease. Hum Immunol. 2005;66:688–99. doi: 10.1016/j.humimm.2005.03.003. PubMed DOI
Di Sabatino A, Ciccocioppo R, Cinque B, Millimaggi D, Morera R, Ricevuti L, et al. Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn’s disease. Gut. 2004;53:70–7. doi: 10.1136/gut.53.1.70. PubMed DOI PMC
Ina K, Itoh J, Fukushima K, Kusugami K, Yamaguchi T, Kyokane K, et al. Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/Bax mucosal imbalance. J Immunol. 1999;163:1081–90. PubMed
Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem. 1997;43:2424–6. PubMed
Armitage P, Berry G. Statistical methods in medical research. 2nd edition. Edited by Blackwell Scientific Publications. Oxford, UK; 1987:276–336.
Mudter J, Neurath MF. Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut. 2007;56:293–303. doi: 10.1136/gut.2005.090464. PubMed DOI PMC
Abuzakouk M, Carton J, Feighery C, O’Donoghue DP, Weir DG, O’Farrelly C. CD4+ CD8+ and CD8alpha+ beta− T lymphocytes in human small intestinal lamina propria. Eur J Gastroenterol Hepatol. 1998;10:325–9. doi: 10.1097/00042737-199804000-00009. PubMed DOI
Berrih S, Gaud C, Bach MA, Le Brigand H, Binet JP, Bach JF. Evaluation of T cell subsets in myasthenia gravis using anti-T cell monoclonal antibodies. Clin Exp Immunol. 1981;45:1–8. PubMed PMC
De Maria A, Malnati M, Moretta A, Pende D, Bottino C, Casorati G, et al. CD3+ 4–8− WT31- (T cell receptor gamma+) cells and other unusual phenotypes are frequently detected among spontaneously interleukin 2-responsive T lymphocytes present in the joint fluid in juvenile rheumatoid arthritis. A clonal analysis. Eur J Immunol. 1987;17:1815–9. doi: 10.1002/eji.1830171221. PubMed DOI
Hirao J, Sugita K. Circulating CD4+CD8+ T lymphocytes in patients with Kawasaki disease. Clin Exp Immunol. 1998;111:397–401. doi: 10.1046/j.1365-2249.1998.00480.x. PubMed DOI PMC
Meisel R, Zibert A, Layrea L, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21. doi: 10.1182/blood-2003-11-3909. PubMed DOI
Gonzalez MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology. 2009;136:978–89. doi: 10.1053/j.gastro.2008.11.041. PubMed DOI
Tanaka F, Tominaga K, Ochi M, Tanigawa T, Watanabe T, Fujiwara Y, et al. Exogenous administration of mesenchymal stem cells ameliorates dextran sulphate-sodium-induced colitis via anti-inflammatory action in damaged tissue in rats. Life Sci. 2008;83:771–9. doi: 10.1016/j.lfs.2008.09.016. PubMed DOI
Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7. doi: 10.1182/blood-2004-09-3696. PubMed DOI
Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells. 2007;25:1753–60. doi: 10.1634/stemcells.2007-0068. PubMed DOI
Marigo I, Dazzi F. The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol. 2011;33:593–602. doi: 10.1007/s00281-011-0267-7. PubMed DOI
Martin P, Gómez M, Larnana A, Cruz-Adalia A, Ramirez-Huesca M, Ursa MA, et al. CD69 association with Jak3/Stat5 proteins regulates TH17 cell differentiation. Mol Cell Biol. 2010;30:4877–89. doi: 10.1128/MCB.00456-10. PubMed DOI PMC
Radulovic K, Manta C, Rossini V, Holzmann K, Kestler HA, Wegenka UM, et al. CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J Immunol. 2012;188:2001–13. doi: 10.4049/jimmunol.1100765. PubMed DOI
Martin P, Sánchez-Madrid F. CD69: an unexpected regulator of TH17 cell-driven inflammatory responses. Sci Signal. 2011;4:pe14. PubMed
Ogino T, Nishimura J, Barman S, Kayama H, Uematsu S, Okuzaki D, et al. Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn’s disease. Gastroenterology. 2013;145:1380–91. doi: 10.1053/j.gastro.2013.08.049. PubMed DOI
Waldner MJ, Neurath MF. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol. 2014;26:75–9. doi: 10.1016/j.smim.2013.12.003. PubMed DOI
Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, et al. Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macacafascicularis. Brain Res. 2010;1334:65–72. doi: 10.1016/j.brainres.2010.03.080. PubMed DOI
Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007;56:1175–86. doi: 10.1002/art.22511. PubMed DOI
Gonzalez MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009;60:1006–19. doi: 10.1002/art.24405. PubMed DOI
Pigneur B, Escher J, Elawad M, Lima R, Buderus S, Kierkus J, et al. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm Bowel Dis. 2013;19:2820–8. doi: 10.1097/01.MIB.0000435439.22484.d3. PubMed DOI
Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74. doi: 10.1016/0092-8674(93)80068-P. PubMed DOI
Kelsall B. Interleukin-10 in inflammatory bowel disease. N Engl J Med. 2009;361:2091–3. doi: 10.1056/NEJMe0909225. PubMed DOI
Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJ, Schreiber S, et al. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut. 2002;50:191–5. doi: 10.1136/gut.50.2.191. PubMed DOI PMC
Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-γ does not break but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149:353–63. doi: 10.1111/j.1365-2249.2007.03422.x. PubMed DOI PMC
Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFN-γ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846–57. doi: 10.1038/cr.2008.80. PubMed DOI
DelaRosa O, Lombardo E, Beraza A, Mancheno-Corvo P, Ramirez C, Menta R, et al. Requirement of IFN-γ-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Eng Part A. 2009;15:2795–806. doi: 10.1089/ten.tea.2008.0630. PubMed DOI
Furuzawa-Carballeda J, Fonseca-Camarillo G, Lima G, Yamamoto-Furusho JK. Indoleamine 2,3-Dioxygenase: expressing cells in Inflammatory Bowel Disease - A Cross-Sectional Study. Clin Dev Immunol. 2013;2013:278035. doi: 10.1155/2013/278035. PubMed DOI PMC
Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, et al. Potential regulatory function of human dendritic cells expressing IDO. Science. 2002;297:1867–70. doi: 10.1126/science.1073514. PubMed DOI
Ge W, Jiang J, Arp J, Liu W, Garcia B, Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90:1312–20. doi: 10.1097/TP.0b013e3181fed001. PubMed DOI
Rizzo R, Lanzoni G, Stignani M, Campioni D, Alviano F, Ricci F, et al. A simple method for identifying bone marrow mesenchymal stromal cells with a high immunosuppressive potential. Cytotherapy. 2011;13:523–7. doi: 10.3109/14653249.2010.542460. PubMed DOI
Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human Leukocyte Antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26:212–22. doi: 10.1634/stemcells.2007-0554. PubMed DOI
Lopez AS, Alegre E, LeMaoult J, Carosella E, Gonzalez A. Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol. 2006;43:2151–60. doi: 10.1016/j.molimm.2006.01.007. PubMed DOI
Jones S, Horwood N, Cope A, Dazzi F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179:2824–31. doi: 10.4049/jimmunol.179.5.2824. PubMed DOI
Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;8:1954–62. doi: 10.1002/stem.118. PubMed DOI
Suva D, Passweg J, Arnaudeau S, Hoffmeyer P, Kindler V. In vitro activated human T lymphocytes very efficiently attach to allogenic multipotent mesenchymal stromal cells and transmigrate under them. J Cell Physiol. 2008;214:588–94. doi: 10.1002/jcp.21244. PubMed DOI
Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 2003;10:228–41. doi: 10.1007/BF02256058. PubMed DOI
Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, et al. Inflammatory cytokine induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010;184:2321–8. doi: 10.4049/jimmunol.0902023. PubMed DOI PMC
Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al. Mesenchymal stem cell mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50. doi: 10.1016/j.stem.2007.11.014. PubMed DOI
de Mare-Bredemeijer EL, Mancham S, Verstegen M, van Gent R, O’Neill DW, Tilanus HW, et al. Human graft-derived mesenchymal stromal cells potently suppress allo-reactive T-cell responses. Stem Cells Dev. 2015;24:1436–47. doi: 10.1089/scd.2014.0485. PubMed DOI
Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N, et al. Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr. 2007;13:217–26. doi: 10.3727/000000006780666957. PubMed DOI PMC