MultiSETTER: web server for multiple RNA structure comparison
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26264783
PubMed Central
PMC4531852
DOI
10.1186/s12859-015-0696-8
PII: 10.1186/s12859-015-0696-8
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Internet * MeSH
- Nucleic Acid Conformation * MeSH
- RNA chemistry MeSH
- Sequence Analysis, RNA methods MeSH
- Sequence Alignment methods MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA MeSH
BACKGROUND: Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. RESULTS: In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. CONCLUSION: To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.
See more in PubMed
Tinoco I, Jr, Bustamante C. How RNA folds. J Mol Biol. 1999;293(2):271–81. doi: 10.1006/jmbi.1999.3001. PubMed DOI
Seetin MG, Mathews DH. RNA structure prediction: an overview of methods. Methods Mol Biol. 2012;905:99–122. PubMed
Mathews DH, Turner DH. Prediction of RNA secondary structure by free energy minimization. Curr Opin Struct Biol. 2006;16(3):270–8. doi: 10.1016/j.sbi.2006.05.010. PubMed DOI
Moss WN. Computational prediction of RNA secondary structure. Method Enzymol. 2013;530:3–65. doi: 10.1016/B978-0-12-420037-1.00001-4. PubMed DOI
Capriotti E, Marti-Renom MA. Computational RNA structure prediction. Curr Bioinform. 2008;3(1):32–45. doi: 10.2174/157489308783329823. DOI
Hendrix DK, Brenner SE, Holbrook SR. RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys. 2005;38(3):221–43. doi: 10.1017/S0033583506004215. PubMed DOI
Holbrook SR. Structural principles from large RNAs. Annu Rev Biophys. 2008;37:445–64. doi: 10.1146/annurev.biophys.36.040306.132755. PubMed DOI
Dror O, Nussinov R, Wolfson H. ARTS: alignment of RNA tertiary structures. Bioinformatics. 2005;21 Suppl 2:ii47–53. PubMed
Dror O, Nussinov R, Wolfson HJ. The ARTS web server for aligning RNA tertiary structures. Nucleic Acids Res. 2006;34(Web Server issue):W412–5. doi: 10.1093/nar/gkl312. PubMed DOI PMC
Ferre F, Ponty Y, Lorenz WA, Clote P. DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Nucleic Acids Res. 2007;35(Web Server issue):W659–68. doi: 10.1093/nar/gkm334. PubMed DOI PMC
Wang CW, Chen KT, Lu CL. iPARTS: an improved tool of pairwise alignment of RNA tertiary structures. Nucleic Acids Res. 2010;38(Web Server issue):W340–7. doi: 10.1093/nar/gkq483. PubMed DOI PMC
Capriotti E, Marti-Renom MA. RNA structure alignment by a unit-vector approach. Bioinformatics. 2008;24(16):i112–8. doi: 10.1093/bioinformatics/btn288. PubMed DOI
Capriotti E, Marti-Renom MA. SARA: a server for function annotation of RNA structures. Nucleic Acids Res. 2009;37(Web Server issue):W260–5. doi: 10.1093/nar/gkp433. PubMed DOI PMC
Chang YF, Huang YL, Lu CL. SARSA: a web tool for structural alignment of RNA using a structural alphabet. Nucleic Acids Res. 2008;36(Web Server issue):W19–24. doi: 10.1093/nar/gkn327. PubMed DOI PMC
Nguyen MN, Tan KP, Madhusudhan MS. CLICK--topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res. 2011;39(Web Server issue):W24–8. doi: 10.1093/nar/gkr393. PubMed DOI PMC
Nguyen MN, Verma C. Rclick: a web server for comparison of RNA 3D structures. Bioinformatics. 2014. doi:10.1093/bioinformatics/btu752. PubMed
Rahrig RR, Leontis NB, Zirbel CL. R3D Align: global pairwise alignment of RNA 3D structures using local superpositions. Bioinformatics. 2010;26(21):2689–97. doi: 10.1093/bioinformatics/btq506. PubMed DOI PMC
Rahrig RR, Petrov AI, Leontis NB, Zirbel CL. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures. Nucleic Acids Res. 2013;41(Web Server issue):W15–21. doi: 10.1093/nar/gkt417. PubMed DOI PMC
He G, Steppi A, Laborde J, Srivastava A, Zhao P, Zhang J. RASS: a web server for RNA alignment in the joint sequence-structure space. Nucleic Acids Res. 2014;42(Web Server issue):W377–81. doi: 10.1093/nar/gku429. PubMed DOI PMC
Kirillova S, Tosatto SC, Carugo O. FRASS: the web-server for RNA structural comparison. BMC Bioinformatics. 2010;11:327. doi: 10.1186/1471-2105-11-327. PubMed DOI PMC
Hoksza D, Svozil D. Efficient RNA pairwise structure comparison by SETTER method. Bioinformatics. 2012;28(14):1858–64. doi: 10.1093/bioinformatics/bts301. PubMed DOI
Cech P, Svozil D, Hoksza D. SETTER: web server for RNA structure comparison. Nucleic Acids Res. 2012;40(Web Server issue):W42–8. doi: 10.1093/nar/gks560. PubMed DOI PMC
Liu YC, Yang CH, Chen KT, Wang JR, Cheng ML, Chung JC, et al. R3D-BLAST: a search tool for similar RNA 3D substructures. Nucleic Acids Res. 2011;39(Web Server issue):W45–9. doi: 10.1093/nar/gkr379. PubMed DOI PMC
Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005;309(5740):1570–3. doi: 10.1126/science.1115901. PubMed DOI
Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci U S A. 1996;93(1):397–401. doi: 10.1073/pnas.93.1.397. PubMed DOI PMC
Kemena C, Bussotti G, Capriotti E, Marti-Renom MA, Notredame C. Using tertiary structure for the computation of highly accurate multiple RNA alignments with the SARA-Coffee package. Bioinformatics. 2013;29(9):1112–9. doi: 10.1093/bioinformatics/btt096. PubMed DOI
Hoksza D, Svozil D. Multiple 3D RNA structure superposition using neighbor joining. IEEE IEEE/ACM T Comput BI. 2015;12(3):520–30. doi: 10.1109/TCBB.2014.2351810. PubMed DOI
Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988;73(1):237–44. doi: 10.1016/0378-1119(88)90330-7. PubMed DOI
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Hogeweg P, Hesper B. The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J Mol Evol. 1984;20(2):175–86. doi: 10.1007/BF02257378. PubMed DOI
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. PubMed
Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell. 2001;107(5):679–88. doi: 10.1016/S0092-8674(01)00546-3. PubMed DOI
Klein DJ, Moore PB, Steitz TA. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J Mol Biol. 2004;340(1):141–77. doi: 10.1016/j.jmb.2004.03.076. PubMed DOI
Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, et al. Structures of the bacterial ribosome at 3.5 A resolution. Science. 2005;310(5749):827–34. doi: 10.1126/science.1117230. PubMed DOI
Schmeing TM, Voorhees RM, Kelley AC, Ramakrishnan V. How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol. 2011;18(4):432–6. doi: 10.1038/nsmb.2003. PubMed DOI PMC
Django. 2015. https://www.djangoproject.com/. Accessed 19. 5. 2015 2015.
Python 2.7. Python Software Foundation. https://www.python.org/. Accessed 19. 5. 2015.
jQuery. jQuery Foundation. http://jquery.com/. Accessed 19. 5. 2015.
Hanson R. JSmol. http://sourceforge.net/projects/jsmol/. Accessed 19. 5. 2015.
MySQL. http://www.mysql.com/. Accessed 19. 5. 2015.
Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007;35(Database issue):D301–3. doi: 10.1093/nar/gkl971. PubMed DOI PMC
Lu XJ, Olson WK. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc. 2008;3(7):1213–27. doi: 10.1038/nprot.2008.104. PubMed DOI PMC
Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, et al. The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res. 2011;39(Database issue):D392–401. doi: 10.1093/nar/gkq1021. PubMed DOI PMC
Westbrook JD, Fitzgerald PM. The PDB format, mmCIF, and other data formats. Methods Biochem Anal. 2003;44:161–79. PubMed
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(Database issue):D130–7. doi: 10.1093/nar/gku1063. PubMed DOI PMC
Neubauer C, Gillet R, Kelley AC, Ramakrishnan V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science. 2012;335(6074):1366–9. doi: 10.1126/science.1217039. PubMed DOI PMC
Gutmann S, Haebel PW, Metzinger L, Sutter M, Felden B, Ban N. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature. 2003;424(6949):699–703. doi: 10.1038/nature01831. PubMed DOI
Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC