Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26269595
PubMed Central
PMC4645623
DOI
10.1074/jbc.m115.662726
PII: S0021-9258(20)44762-3
Knihovny.cz E-zdroje
- Klíčová slova
- catalytic intermediate, catalytic mechanism, conformational change, copper amine oxidase, electron transfer, oxidase, quinone, radical, topa quinone, x-ray crystallography,
- MeSH
- Arthrobacter enzymologie MeSH
- bakteriální proteiny chemie MeSH
- histaminasa chemie MeSH
- krystalografie rentgenová MeSH
- měď chemie MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- histaminasa MeSH
- měď MeSH
The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an "on-copper" conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the "off-copper" conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.
From the Department of Biochemistry Osaka Medical College Takatsuki Osaka 569 8686 Japan
the Advanced Photon Technology Division RIKEN SPring 8 Center Sayo gun Hyogo 679 5148 Japan
the Department of Chemistry Osaka Medical College Takatsuki Osaka 569 8686 Japan and
the Institute of Scientific and Industrial Research Osaka University Ibaraki Osaka 567 0047 Japan
Zobrazit více v PubMed
MacIntire W. S., Hartmann C. (1993) in Principles and Applications of Quinoproteins (Davidson V. L., ed) pp. 97–171, Marcel Dekker, New York
Floris G., Mondovi B. (eds) (2009) Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology, CRC Press, Inc., Boca Raton, FL
Klema V. J., Wilmot C. M. (2012) The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 13, 5375–5405 PubMed PMC
Maintz L., Novak N. (2007) Histamine and histamine intolerance. Am. J. Clin. Nutr. 85, 1185–1196 PubMed
Jalkanen S., Karikoski M., Mercier N., Koskinen K., Henttinen T., Elima K., Salmivirta K., Salmi M. (2007) The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood 110, 1864–1870 PubMed
Hernandez M., Solé M., Boada M., Unzeta M. (2006) Soluble semicarbazide sensitive amine oxidase (SSAO) catalysis induces apoptosis in vascular smooth muscle cells. Biochim. Biophys. Acta 1763, 164–173 PubMed
Lucero H. A., Kagan H. M. (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol. Life Sci. 63, 2304–2316 PubMed PMC
Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. (2006) Functions of amine oxidases in plant development and defense. Trends Plant Sci. 11, 80–88 PubMed
Mészáros Z., Karádi I., Csányi A., Szombathy T., Romics L., Magyar K. (1999) Determination of human serum semicarbazide-sensitive amine oxidase activity: a possible clinical marker of atherosclerosis. Eur. J. Drug Metab. Pharmacokinet. 24, 299–302 PubMed
Yu P. H., Davis B. A., Deng Y. (2001) 2-Bromoethylamine as a potent selective suicide inhibitor for semicarbazide-sensitive amine oxidase. Biochem. Pharmacol. 61, 741–748 PubMed
Inoue T., Morita M., Tojo T., Nagashima A., Moritomo A., Miyake H. (2013) Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment. Bioorg. Med. Chem. 21, 3873–3881 PubMed
Matsuzaki R., Fukui T., Sato H., Ozaki Y., Tanizawa K. (1994) Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue. FEBS Lett. 351, 360–364 PubMed
Klinman J. P., Mu D. (1994) Quinoenzymes in biology. Annu. Rev. Biochem. 63, 299–344 PubMed
Choi Y. H., Matsuzaki R., Fukui T., Shimizu E., Yorifuji T., Sato H., Ozaki Y., Tanizawa K. (1995) Copper/topa quinone-containing histamine oxidase from Arthrobacter globiformis. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor. J. Biol. Chem. 270, 4712–4720 PubMed
Okajima T., Tanizawa K. (2009) Mechanism of TPQ biogenesis in prokaryotic copper amine oxidase in Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology (Floris G., Mondovi B., eds) pp. 103–118, CRC Press, Inc., Boca Raton, FL
Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. (1995) Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 Å resolution. Structure 3, 1171–1184 PubMed
Wilce M. C. J., Dooley D. M., Freeman H. C., Guss J. M., Matsunami H., McIntire W. S., Ruggiero C. E., Tanizawa K., Yamaguchi H. (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36, 16116–16133 PubMed
Kishishita S., Okajima T., Kim M., Yamaguchi H., Hirota S., Suzuki S., Kuroda S., Tanizawa K., Mure M. (2003) Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. J. Am. Chem. Soc. 125, 1041–1055 PubMed
Murakawa T., Hayashi H., Sunami T., Kurihara K., Tamada T., Kuroki R., Suzuki M., Tanizawa K., Okajima T. (2013) High-resolution crystal structure of copper amine oxidase from Arthrobacter globiformis: assignment of bound diatomic molecules as O2. Acta Crystallogr. D Biol. Crystallogr. 69, 2483–2494 PubMed
Li R., Klinman J. P., Mathews F. S. (1998) Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 Å resolution reveals the active conformation. Structure 6, 293–307 PubMed
Chang C. M., Klema V. J., Johnson B. J., Mure M., Klinman J. P., Wilmot C. M. (2010) Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha. Biochemistry 49, 2540–2550 PubMed PMC
Duff A. P., Cohen A. E., Ellis P. J., Kuchar J. A., Langley D. B., Shepard E. M., Dooley D. M., Freeman H. C., Guss J. M. (2003) The crystal structure of Pichia pastoris lysyl oxidase. Biochemistry 42, 15148–15157 PubMed
McGrath A. P., Mithieux S. M., Collyer C. A., Bakhuis J. G., van den Berg M., Sein A., Heinz A., Schmelzer C., Weiss A. S., Guss J. M. (2011) Structure and activity of Aspergillus nidulans copper amine oxidase. Biochemistry 50, 5718–5730 PubMed
Kumar V., Dooley D. M., Freeman H. C., Guss J. M., Harvey I., McGuirl M. A., Wilce M. C., Zubak V. M. (1996) Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure 4, 943–955 PubMed
Lunelli M., Di Paolo M. L., Biadene M., Calderone V., Battistutta R., Scarpa M., Rigo A., Zanotti G. (2005) Crystal structure of amine oxidase from bovine serum. J. Mol. Biol. 346, 991–1004 PubMed
McGrath A. P., Hilmer K. M., Collyer C. A., Shepard E. M., Elmore B. O., Brown D. E., Dooley D. M., Guss J. M. (2009) Structure and inhibition of human diamine oxidase. Biochemistry 48, 9810–9822 PubMed PMC
Airenne T. T., Nymalm Y., Kidron H., Smith D. J., Pihlavisto M., Salmi M., Jalkanen S., Johnson M. S., Salminen T. A. (2005) Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. Protein Sci. 14, 1964–1974 PubMed PMC
Jakobsson E., Nilsson J., Ogg D., Kleywegt G. J. (2005) Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1. Acta Crystallogr. D Biol. Crystallogr. 61, 1550–1562 PubMed
Chiu Y. C., Okajima T., Murakawa T., Uchida M., Taki M., Hirota S., Kim M., Yamaguchi H., Kawano Y., Kamiya N., Kuroda S., Hayashi H., Yamamoto Y., Tanizawa K. (2006) Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Biochemistry 45, 4105–4120 PubMed
Plastino J., Green E. L., Sanders-Loehr J., Klinman J. P. (1999) An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha. Biochemistry 38, 8204–8216 PubMed
Murray J. M., Saysell C. G., Wilmot C. M., Tambyrajah W. S., Jaeger J., Knowles P. F., Phillips S. E., McPherson M. J. (1999) The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants. Biochemistry 38, 8217–8227 PubMed
Dooley D. M., McGuirl M. A., Brown D. E., Turowski P. N., McIntire W. S., Knowles P. F. (1991) A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature 349, 262–264 PubMed
Turowski P. N., McGuirl M. A., Dooley D. M. (1993) Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J. Biol. Chem. 268, 17680–17682 PubMed
Su Q., Klinman J. P. (1998) Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Biochemistry 37, 12513–12525 PubMed
Shepard E. M., Dooley D. M. (2006) Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase. J. Biol. Inorg. Chem. 11, 1039–1048 PubMed
Welford R. W., Lam A., Mirica L. M., Klinman J. P. (2007) Partial conversion of Hansenula polymorpha amine oxidase into a “plant” amine oxidase: implications for copper chemistry and mechanism. Biochemistry 46, 10817–10827 PubMed
Shepard E. M., Okonski K. M., Dooley D. M. (2008) Kinetics and spectroscopic evidence that the Cu(I)-semiquinone intermediate reduces molecular oxygen in the oxidative half-reaction of Arthrobacter globiformis amine oxidase. Biochemistry 47, 13907–13920 PubMed PMC
Mukherjee A., Smirnov V. V., Lanci M. P., Brown D. E., Shepard E. M., Dooley D. M., Roth J. P. (2008) Inner-sphere mechanism for molecular oxygen reduction catalyzed by copper amine oxidases. J. Am. Chem. Soc. 130, 9459–9473 PubMed PMC
Johnson B. J., Yukl E. T., Klema V. J., Klinman J. P., Wilmot C. M. (2013) Structural snapshots from the oxidative half-reaction of a copper amine oxidase: implications for O2 activation. J. Biol. Chem. 288, 28409–28417 PubMed PMC
Murakawa T., Okajima T., Kuroda S., Nakamoto T., Taki M., Yamamoto Y., Hayashi H., Tanizawa K. (2006) Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction. Biochem. Biophys. Res. Commun. 342, 414–423 PubMed
Taki M., Murakawa T., Nakamoto T., Uchida M., Hayashi H., Tanizawa K., Yamamoto Y., Okajima T. (2008) Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase. Biochemistry 47, 7726–7733 PubMed
Fersht A. (1998) in Structure and Mechanism in Protein Science, pp. 103–131, W. H. Freeman and Co., New York
Otwinowski Z., Minor W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 PubMed
Leslie A. G. W. (1992) Joint CCP4 and EESF-EACMB Newsletter on Protein Crystallography, SERC Daresbury Laboratory, Warrington, UK
Collaborative Computational Project, Number 4 (1994) The CCP 4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 PubMed
McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 PubMed PMC
Murshudov G. N., Vagin A. A., Dodson E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 PubMed
Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L.-W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 PubMed PMC
Emsley P., Lohkamp B., Scott W. G., Cowtan K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 PubMed PMC
Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G. W., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., Read R. J., Vagin A., Wilson K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 PubMed PMC
Schüttelkopf A. W., van Aalten D. M. F. (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 PubMed
Ten Eyck L. F. (1973) Crystallographic fast Fourier transforms. Acta Crystallogr. A Found. Adv. 29, 183–191
Murakawa T., Hayashi H., Taki M., Yamamoto Y., Kawano Y., Tanizawa K., Okajima T. (2012) Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors. J. Biochem. 151, 167–178 PubMed
Mure M., Klinman J. P. (1993) Synthesis and spectroscopic characterization of model compounds for the active site cofactor in copper amine oxidase. J. Am. Chem. Soc. 115, 7117–7127
Dooley D. M., McIntire W. S., McCuirl M. A., Cote C. E., Bates J. L. (1990) Characterization of the active site of Arthrobacter P1 methylamine oxidase: evidence for copper-quinone interactions. J. Am. Chem. Soc. 112, 2782–2789
Shimizu E., Ohta K., Takayama S., Kitagaki Y., Tanizawa K., Yorifuji T. (1997) Purification and properties of phenylethylamine oxidase of Arthrobacter globiformis. Biosci. Biotechnol. Biochem. 61, 501–505
Juda G. A., Shepard E. M., Elmore B. O., Dooley D. M. (2006) A comparative study of the binding and inhibition of four copper-containing amine oxidases by azide: implications for the role of copper during the oxidative half-reaction. Biochemistry 45, 8788–8800 PubMed
Nakatani H., Dunford H. B. (1979) Meaning of diffusion-controlled association rate constants in enzymology. J. Phys. Chem. 83, 2662–2665
Masson P., Lushchekina S., Schopfer L. M., Lockridge O. (2013) Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: kinetic and molecular dynamics studies. Biochem. J. 454, 387–399 PubMed
Hardy L. W., Kirsch J. F. (1984) Diffusion-limited component of reactions catalyzed by Bacillus cereus β-lactamase I. Biochemistry 23, 1275–1282 PubMed
Shepard E. M., Juda G. A., Ling K. Q., Sayre L. M., Dooley D. M. (2004) Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings (Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor. J. Biol. Inorg. Chem. 9, 256–268 PubMed
Schwartz B., Olgin A. K., Klinman J. P. (2001) The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast. Biochemistry 40, 2954–2963 PubMed
Wilmot C. M., Hajdu J., McPherson M. J., Knowles P. F., Phillips S. E. (1999) Visualization of dioxygen bound to copper during enzyme catalysis. Science 286, 1724–1728 PubMed
Dooley D. M., Scott R. A., Knowles P. F., Colangelo C. M., McGuirl M. A., Brown D. E. (1998) Structures of the Cu(I) and Cu(II) forms of amine oxidases from x-ray absorption spectroscopy. J. Am. Chem. Soc. 120, 2599–2605
Dooley D. M., Brown D. E. (1996) Intramolecular electron transfer in the oxidation of amines by methylamine oxidase from Arthrobacter P1. J. Biol. Inorg. Chem. 1, 205–209
Kyte J. (1995) Mechanism in Protein Chemistry, pp. 350–371, Garland Publishing, Inc., New York
Lopes Jesus A. J., Redinha J. S. (2011) Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives. J. Phys. Chem. A 115, 14069–14077 PubMed
Bisby R. H., Johnson S. A., Parker A. W., Tavender S. M. (1999) Time-resolved resonance Raman studies of radicals from 4-aminoresorcinol as models for the active site radical intermediate in copper amine oxidases. Laser Chem. 19, 201–208
Dooley D. M., Cote C. E. (1985) Copper(II) coordination chemistry in bovine plasma amine oxidase: azide and thiocyanate binding. Inorg. Chem. 24, 3996–4000
McGuirl M. A., Brown D. E., Dooley D. M. (1997) Cyanide as a copper-directed inhibitor of amine oxidases: implications for the mechanism of amine oxidation. J. Biol. Inorg. Chem. 2, 336–342
PDB
1D6U, 1IU7, 3X3X, 3X3Y, 3X3Z, 3X40, 3X41, 3X42, 4EV2