Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions

. 2015 Sep 18 ; 290 (38) : 23094-109. [epub] 20150811

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26269595
Odkazy

PubMed 26269595
PubMed Central PMC4645623
DOI 10.1074/jbc.m115.662726
PII: S0021-9258(20)44762-3
Knihovny.cz E-zdroje

The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an "on-copper" conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the "off-copper" conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.

Zobrazit více v PubMed

MacIntire W. S., Hartmann C. (1993) in Principles and Applications of Quinoproteins (Davidson V. L., ed) pp. 97–171, Marcel Dekker, New York

Floris G., Mondovi B. (eds) (2009) Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology, CRC Press, Inc., Boca Raton, FL

Klema V. J., Wilmot C. M. (2012) The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 13, 5375–5405 PubMed PMC

Maintz L., Novak N. (2007) Histamine and histamine intolerance. Am. J. Clin. Nutr. 85, 1185–1196 PubMed

Jalkanen S., Karikoski M., Mercier N., Koskinen K., Henttinen T., Elima K., Salmivirta K., Salmi M. (2007) The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding. Blood 110, 1864–1870 PubMed

Hernandez M., Solé M., Boada M., Unzeta M. (2006) Soluble semicarbazide sensitive amine oxidase (SSAO) catalysis induces apoptosis in vascular smooth muscle cells. Biochim. Biophys. Acta 1763, 164–173 PubMed

Lucero H. A., Kagan H. M. (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol. Life Sci. 63, 2304–2316 PubMed PMC

Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. (2006) Functions of amine oxidases in plant development and defense. Trends Plant Sci. 11, 80–88 PubMed

Mészáros Z., Karádi I., Csányi A., Szombathy T., Romics L., Magyar K. (1999) Determination of human serum semicarbazide-sensitive amine oxidase activity: a possible clinical marker of atherosclerosis. Eur. J. Drug Metab. Pharmacokinet. 24, 299–302 PubMed

Yu P. H., Davis B. A., Deng Y. (2001) 2-Bromoethylamine as a potent selective suicide inhibitor for semicarbazide-sensitive amine oxidase. Biochem. Pharmacol. 61, 741–748 PubMed

Inoue T., Morita M., Tojo T., Nagashima A., Moritomo A., Miyake H. (2013) Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment. Bioorg. Med. Chem. 21, 3873–3881 PubMed

Matsuzaki R., Fukui T., Sato H., Ozaki Y., Tanizawa K. (1994) Generation of the topa quinone cofactor in bacterial monoamine oxidase by cupric ion-dependent autooxidation of a specific tyrosyl residue. FEBS Lett. 351, 360–364 PubMed

Klinman J. P., Mu D. (1994) Quinoenzymes in biology. Annu. Rev. Biochem. 63, 299–344 PubMed

Choi Y. H., Matsuzaki R., Fukui T., Shimizu E., Yorifuji T., Sato H., Ozaki Y., Tanizawa K. (1995) Copper/topa quinone-containing histamine oxidase from Arthrobacter globiformis. Molecular cloning and sequencing, overproduction of precursor enzyme, and generation of topa quinone cofactor. J. Biol. Chem. 270, 4712–4720 PubMed

Okajima T., Tanizawa K. (2009) Mechanism of TPQ biogenesis in prokaryotic copper amine oxidase in Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology (Floris G., Mondovi B., eds) pp. 103–118, CRC Press, Inc., Boca Raton, FL

Parsons M. R., Convery M. A., Wilmot C. M., Yadav K. D., Blakeley V., Corner A. S., Phillips S. E., McPherson M. J., Knowles P. F. (1995) Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 Å resolution. Structure 3, 1171–1184 PubMed

Wilce M. C. J., Dooley D. M., Freeman H. C., Guss J. M., Matsunami H., McIntire W. S., Ruggiero C. E., Tanizawa K., Yamaguchi H. (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36, 16116–16133 PubMed

Kishishita S., Okajima T., Kim M., Yamaguchi H., Hirota S., Suzuki S., Kuroda S., Tanizawa K., Mure M. (2003) Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes. J. Am. Chem. Soc. 125, 1041–1055 PubMed

Murakawa T., Hayashi H., Sunami T., Kurihara K., Tamada T., Kuroki R., Suzuki M., Tanizawa K., Okajima T. (2013) High-resolution crystal structure of copper amine oxidase from Arthrobacter globiformis: assignment of bound diatomic molecules as O2. Acta Crystallogr. D Biol. Crystallogr. 69, 2483–2494 PubMed

Li R., Klinman J. P., Mathews F. S. (1998) Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 Å resolution reveals the active conformation. Structure 6, 293–307 PubMed

Chang C. M., Klema V. J., Johnson B. J., Mure M., Klinman J. P., Wilmot C. M. (2010) Kinetic and structural analysis of substrate specificity in two copper amine oxidases from Hansenula polymorpha. Biochemistry 49, 2540–2550 PubMed PMC

Duff A. P., Cohen A. E., Ellis P. J., Kuchar J. A., Langley D. B., Shepard E. M., Dooley D. M., Freeman H. C., Guss J. M. (2003) The crystal structure of Pichia pastoris lysyl oxidase. Biochemistry 42, 15148–15157 PubMed

McGrath A. P., Mithieux S. M., Collyer C. A., Bakhuis J. G., van den Berg M., Sein A., Heinz A., Schmelzer C., Weiss A. S., Guss J. M. (2011) Structure and activity of Aspergillus nidulans copper amine oxidase. Biochemistry 50, 5718–5730 PubMed

Kumar V., Dooley D. M., Freeman H. C., Guss J. M., Harvey I., McGuirl M. A., Wilce M. C., Zubak V. M. (1996) Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure 4, 943–955 PubMed

Lunelli M., Di Paolo M. L., Biadene M., Calderone V., Battistutta R., Scarpa M., Rigo A., Zanotti G. (2005) Crystal structure of amine oxidase from bovine serum. J. Mol. Biol. 346, 991–1004 PubMed

McGrath A. P., Hilmer K. M., Collyer C. A., Shepard E. M., Elmore B. O., Brown D. E., Dooley D. M., Guss J. M. (2009) Structure and inhibition of human diamine oxidase. Biochemistry 48, 9810–9822 PubMed PMC

Airenne T. T., Nymalm Y., Kidron H., Smith D. J., Pihlavisto M., Salmi M., Jalkanen S., Johnson M. S., Salminen T. A. (2005) Crystal structure of the human vascular adhesion protein-1: unique structural features with functional implications. Protein Sci. 14, 1964–1974 PubMed PMC

Jakobsson E., Nilsson J., Ogg D., Kleywegt G. J. (2005) Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1. Acta Crystallogr. D Biol. Crystallogr. 61, 1550–1562 PubMed

Chiu Y. C., Okajima T., Murakawa T., Uchida M., Taki M., Hirota S., Kim M., Yamaguchi H., Kawano Y., Kamiya N., Kuroda S., Hayashi H., Yamamoto Y., Tanizawa K. (2006) Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase. Biochemistry 45, 4105–4120 PubMed

Plastino J., Green E. L., Sanders-Loehr J., Klinman J. P. (1999) An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha. Biochemistry 38, 8204–8216 PubMed

Murray J. M., Saysell C. G., Wilmot C. M., Tambyrajah W. S., Jaeger J., Knowles P. F., Phillips S. E., McPherson M. J. (1999) The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants. Biochemistry 38, 8217–8227 PubMed

Dooley D. M., McGuirl M. A., Brown D. E., Turowski P. N., McIntire W. S., Knowles P. F. (1991) A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature 349, 262–264 PubMed

Turowski P. N., McGuirl M. A., Dooley D. M. (1993) Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J. Biol. Chem. 268, 17680–17682 PubMed

Su Q., Klinman J. P. (1998) Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Biochemistry 37, 12513–12525 PubMed

Shepard E. M., Dooley D. M. (2006) Intramolecular electron transfer rate between active-site copper and TPQ in Arthrobacter globiformis amine oxidase. J. Biol. Inorg. Chem. 11, 1039–1048 PubMed

Welford R. W., Lam A., Mirica L. M., Klinman J. P. (2007) Partial conversion of Hansenula polymorpha amine oxidase into a “plant” amine oxidase: implications for copper chemistry and mechanism. Biochemistry 46, 10817–10827 PubMed

Shepard E. M., Okonski K. M., Dooley D. M. (2008) Kinetics and spectroscopic evidence that the Cu(I)-semiquinone intermediate reduces molecular oxygen in the oxidative half-reaction of Arthrobacter globiformis amine oxidase. Biochemistry 47, 13907–13920 PubMed PMC

Mukherjee A., Smirnov V. V., Lanci M. P., Brown D. E., Shepard E. M., Dooley D. M., Roth J. P. (2008) Inner-sphere mechanism for molecular oxygen reduction catalyzed by copper amine oxidases. J. Am. Chem. Soc. 130, 9459–9473 PubMed PMC

Johnson B. J., Yukl E. T., Klema V. J., Klinman J. P., Wilmot C. M. (2013) Structural snapshots from the oxidative half-reaction of a copper amine oxidase: implications for O2 activation. J. Biol. Chem. 288, 28409–28417 PubMed PMC

Murakawa T., Okajima T., Kuroda S., Nakamoto T., Taki M., Yamamoto Y., Hayashi H., Tanizawa K. (2006) Quantum mechanical hydrogen tunneling in bacterial copper amine oxidase reaction. Biochem. Biophys. Res. Commun. 342, 414–423 PubMed

Taki M., Murakawa T., Nakamoto T., Uchida M., Hayashi H., Tanizawa K., Yamamoto Y., Okajima T. (2008) Further insight into the mechanism of stereoselective proton abstraction by bacterial copper amine oxidase. Biochemistry 47, 7726–7733 PubMed

Fersht A. (1998) in Structure and Mechanism in Protein Science, pp. 103–131, W. H. Freeman and Co., New York

Otwinowski Z., Minor W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 PubMed

Leslie A. G. W. (1992) Joint CCP4 and EESF-EACMB Newsletter on Protein Crystallography, SERC Daresbury Laboratory, Warrington, UK

Collaborative Computational Project, Number 4 (1994) The CCP 4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 PubMed

McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 PubMed PMC

Murshudov G. N., Vagin A. A., Dodson E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 PubMed

Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L.-W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 PubMed PMC

Emsley P., Lohkamp B., Scott W. G., Cowtan K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 PubMed PMC

Winn M. D., Ballard C. C., Cowtan K. D., Dodson E. J., Emsley P., Evans P. R., Keegan R. M., Krissinel E. B., Leslie A. G. W., McCoy A., McNicholas S. J., Murshudov G. N., Pannu N. S., Potterton E. A., Powell H. R., Read R. J., Vagin A., Wilson K. S. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 PubMed PMC

Schüttelkopf A. W., van Aalten D. M. F. (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 PubMed

Ten Eyck L. F. (1973) Crystallographic fast Fourier transforms. Acta Crystallogr. A Found. Adv. 29, 183–191

Murakawa T., Hayashi H., Taki M., Yamamoto Y., Kawano Y., Tanizawa K., Okajima T. (2012) Structural insights into the substrate specificity of bacterial copper amine oxidase obtained by using irreversible inhibitors. J. Biochem. 151, 167–178 PubMed

Mure M., Klinman J. P. (1993) Synthesis and spectroscopic characterization of model compounds for the active site cofactor in copper amine oxidase. J. Am. Chem. Soc. 115, 7117–7127

Dooley D. M., McIntire W. S., McCuirl M. A., Cote C. E., Bates J. L. (1990) Characterization of the active site of Arthrobacter P1 methylamine oxidase: evidence for copper-quinone interactions. J. Am. Chem. Soc. 112, 2782–2789

Shimizu E., Ohta K., Takayama S., Kitagaki Y., Tanizawa K., Yorifuji T. (1997) Purification and properties of phenylethylamine oxidase of Arthrobacter globiformis. Biosci. Biotechnol. Biochem. 61, 501–505

Juda G. A., Shepard E. M., Elmore B. O., Dooley D. M. (2006) A comparative study of the binding and inhibition of four copper-containing amine oxidases by azide: implications for the role of copper during the oxidative half-reaction. Biochemistry 45, 8788–8800 PubMed

Nakatani H., Dunford H. B. (1979) Meaning of diffusion-controlled association rate constants in enzymology. J. Phys. Chem. 83, 2662–2665

Masson P., Lushchekina S., Schopfer L. M., Lockridge O. (2013) Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: kinetic and molecular dynamics studies. Biochem. J. 454, 387–399 PubMed

Hardy L. W., Kirsch J. F. (1984) Diffusion-limited component of reactions catalyzed by Bacillus cereus β-lactamase I. Biochemistry 23, 1275–1282 PubMed

Shepard E. M., Juda G. A., Ling K. Q., Sayre L. M., Dooley D. M. (2004) Cyanide as a copper and quinone-directed inhibitor of amine oxidases from pea seedlings (Pisum sativum) and Arthrobacter globiformis: evidence for both copper coordination and cyanohydrin derivatization of the quinone cofactor. J. Biol. Inorg. Chem. 9, 256–268 PubMed

Schwartz B., Olgin A. K., Klinman J. P. (2001) The role of copper in topa quinone biogenesis and catalysis, as probed by azide inhibition of a copper amine oxidase from yeast. Biochemistry 40, 2954–2963 PubMed

Wilmot C. M., Hajdu J., McPherson M. J., Knowles P. F., Phillips S. E. (1999) Visualization of dioxygen bound to copper during enzyme catalysis. Science 286, 1724–1728 PubMed

Dooley D. M., Scott R. A., Knowles P. F., Colangelo C. M., McGuirl M. A., Brown D. E. (1998) Structures of the Cu(I) and Cu(II) forms of amine oxidases from x-ray absorption spectroscopy. J. Am. Chem. Soc. 120, 2599–2605

Dooley D. M., Brown D. E. (1996) Intramolecular electron transfer in the oxidation of amines by methylamine oxidase from Arthrobacter P1. J. Biol. Inorg. Chem. 1, 205–209

Kyte J. (1995) Mechanism in Protein Chemistry, pp. 350–371, Garland Publishing, Inc., New York

Lopes Jesus A. J., Redinha J. S. (2011) Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives. J. Phys. Chem. A 115, 14069–14077 PubMed

Bisby R. H., Johnson S. A., Parker A. W., Tavender S. M. (1999) Time-resolved resonance Raman studies of radicals from 4-aminoresorcinol as models for the active site radical intermediate in copper amine oxidases. Laser Chem. 19, 201–208

Dooley D. M., Cote C. E. (1985) Copper(II) coordination chemistry in bovine plasma amine oxidase: azide and thiocyanate binding. Inorg. Chem. 24, 3996–4000

McGuirl M. A., Brown D. E., Dooley D. M. (1997) Cyanide as a copper-directed inhibitor of amine oxidases: implications for the mechanism of amine oxidation. J. Biol. Inorg. Chem. 2, 336–342

Zobrazit více v PubMed

PDB
1D6U, 1IU7, 3X3X, 3X3Y, 3X3Z, 3X40, 3X41, 3X42, 4EV2

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...