Isoflavones Reduce Copper with Minimal Impact on Iron In Vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26273421
PubMed Central
PMC4529972
DOI
10.1155/2015/437381
Knihovny.cz E-zdroje
- MeSH
- isoflavony metabolismus MeSH
- lidé MeSH
- měď metabolismus MeSH
- techniky in vitro MeSH
- železo metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- isoflavony MeSH
- měď MeSH
- železo MeSH
Isoflavones are commonly consumed in many Asian countries and have potentially positive effects on human being. Only a few and rather controversial data on their interactions with copper and iron are available to date. 13 structurally related isoflavones were tested in the competitive manner for their Cu/Fe-chelating/reducing properties. Notwithstanding the 5-hydroxy-4-keto chelation site was associated with ferric, ferrous, and cupric chelation, the chelation potential of isoflavones was low and no cuprous chelation was observed. None of isoflavones was able to substantially reduce ferric ions, but the vast majority reduced cupric ions. The most important feature for cupric reduction was the presence of an unsubstituted 4'-hydroxyl; contrarily the presence of a free 5-hydroxyl decreased or abolished the reduction due to chelation of cupric ions. The results from this study may enable additional experiments which might clarify the effects of isoflavones on human being and/or mechanisms of copper absorption.
Zobrazit více v PubMed
Dewick P. M. Medicinal Natural Products. A Biosynthetic Approach. 3rd. New York, NY, USA: John Wiley & Sons; 2009.
Lapčík O. Isoflavonoids in non-leguminous taxa: a rarity or a rule? Phytochemistry. 2007;68(22–24):2909–2916. doi: 10.1016/j.phytochem.2007.08.006. PubMed DOI
Mackova Z., Koblovska R., Lapcik O. Distribution of isoflavonoids in non-leguminous taxa—an update. Phytochemistry. 2006;67(9):849–855. doi: 10.1016/j.phytochem.2006.01.020. PubMed DOI
Leclercq G., Jacquot Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer—considerations concerning related efficacy and safety. Journal of Steroid Biochemistry and Molecular Biology. 2014;139:237–244. doi: 10.1016/j.jsbmb.2012.12.010. PubMed DOI
De Kleijn M. J. J., van der Schouw Y. T., Wilson P. W. F., Grobbee D. E., Jacques P. F. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal U.S. women: the framingham study. Journal of Nutrition. 2002;132(2):276–282. PubMed
Kokubo Y., Iso H., Ishihara J., Okada K., Inoue M., Tsugane S. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation. 2007;116(22):2553–2562. doi: 10.1161/circulationaha.106.683755. PubMed DOI
Yochum L., Kushi L. H., Meyer K., Folsom A. R. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. American Journal of Epidemiology. 1999;149(10):943–949. doi: 10.1093/oxfordjournals.aje.a009738. PubMed DOI
Nagata C., Takatsuka N., Shimizu H. Soy and fish oil intake and mortality in a Japanese community. American Journal of Epidemiology. 2002;156(9):824–831. doi: 10.1093/aje/kwf118. PubMed DOI
van der Schouw Y. T., Kreijkamp-Kaspers S., Peeters P. H. M., Keinan-Boker L., Rimm E. B., Grobbee D. E. Prospective study on usual dietary phytoestrogen intake and cardiovascular disease risk in Western women. Circulation. 2005;111(4):465–471. doi: 10.1161/01.cir.0000153814.87631.b0. PubMed DOI
Dowling S., Regan F., Hughes H. The characterisation of structural and antioxidant properties of isoflavone metal chelates. Journal of Inorganic Biochemistry. 2010;104(10):1091–1098. doi: 10.1016/j.jinorgbio.2010.06.007. PubMed DOI
Kgomotso T., Chiu F., Ng K. Genistein- and daidzein 7-O-β-D-glucuronic acid retain the ability to inhibit copper-mediated lipid oxidation of low density lipoprotein. Molecular Nutrition & Food Research. 2008;52(12):1457–1466. doi: 10.1002/mnfr.200800010. PubMed DOI
MacÁková K., Mladěnka P., Filipský T., et al. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chemistry. 2012;135(4):2584–2592. doi: 10.1016/j.foodchem.2012.06.107. PubMed DOI
Ruiz-Larrea M. B., Mohan A. R., Paganga G., Miller N. J., Bolwell G. P., Rice-Evans C. A. Antioxidant activity of phytoestrogenic isoflavones. Free Radical Research. 1997;26(1):63–70. doi: 10.3109/10715769709097785. PubMed DOI
Kuo S.-M., Leavitt P. S., Lin C.-P. Dietary flavonoids interact with trace metals and affect metallothionein level in human intestinal cells. Biological Trace Element Research. 1998;62(3):135–153. doi: 10.1007/bf02783967. PubMed DOI
Toda S., Shirataki Y. Comparison of antioxidative and chelating effects of daidzein and daidzin on protein oxidative modification by copper in vitro. Biological Trace Element Research. 2001;79(1):83–89. doi: 10.1385/bter:79:1:83. PubMed DOI
Rowland I., Faughnan M., Hoey L., Wähälä K., Williamson G., Cassidy A. Bioavailability of phyto-oestrogens. The British Journal of Nutrition. 2003;89(1):S45–S58. PubMed
Nose Y., Kim B.-E., Thiele D. J. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metabolism. 2006;4(3):235–244. doi: 10.1016/j.cmet.2006.08.009. PubMed DOI
Lee J., Peña M. M. O., Nose Y., Thiele D. J. Biochemical characterization of the human copper transporter Ctr1. The Journal of Biological Chemistry. 2002;277(6):4380–4387. doi: 10.1074/jbc.m104728200. PubMed DOI
Gupta A., Lutsenko S. Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Medicinal Chemistry. 2009;1(6):1125–1142. doi: 10.4155/fmc.09.84. PubMed DOI PMC
Van Den Berghe P. V. E., Klomp L. W. J. New developments in the regulation of intestinal copper absorption. Nutrition Reviews. 2009;67(11):658–672. doi: 10.1111/j.1753-4887.2009.00250.x. PubMed DOI
Zimnicka A. M., Maryon E. B., Kaplan J. H. Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. The Journal of Biological Chemistry. 2007;282(36):26471–26480. doi: 10.1074/jbc.m702653200. PubMed DOI
Gunshin H., Mackenzie B., Berger U. V., et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482–488. doi: 10.1038/41343. PubMed DOI
Arredondo M., Muñoz P., Mura C. V., Núñez M. T. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. The American Journal of Physiology—Cell Physiology. 2003;284(6):C1525–C1530. doi: 10.1152/ajpcell.00480.2002. PubMed DOI
Illing A. C., Shawki A., Cunningham C. L., Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. The Journal of Biological Chemistry. 2012;287(36):30485–30496. doi: 10.1074/jbc.m112.364208. PubMed DOI PMC
Knöpfel M., Smith C., Solioz M. ATP-driven copper transport across the intestinal brush border membrane. Biochemical and Biophysical Research Communications. 2005;330(3):645–652. doi: 10.1016/j.bbrc.2005.03.023. PubMed DOI
Zimnicka A. M., Ivy K., Kaplan J. H. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. American Journal of Physiology—Cell Physiology. 2011;300(3):C588–C599. doi: 10.1152/ajpcell.00054.2010. PubMed DOI PMC
Mladěnka P., Macáková K., Zatloukalová L., et al. In vitro interactions of coumarins with iron. Biochimie. 2010;92(9):1108–1114. doi: 10.1016/j.biochi.2010.03.025. PubMed DOI
Říha M., Karlíčková J., Filipský T., Macáková K., Hrdina R., Mladěnka P. Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. Journal of Inorganic Biochemistry. 2013;123:80–87. doi: 10.1016/j.jinorgbio.2013.02.011. PubMed DOI
Filipsky T., Ríha M., Hrdina R., Vávrová K., Mladěnka P. Mathematical calculations of iron complex stoichiometry by direct UV-Vis spectrophotometry. Bioorganic Chemistry. 2013;49:1–8. doi: 10.1016/j.bioorg.2013.06.002. PubMed DOI
Job P. Recherches sur la formation de complexes mineraux en solution, et sur leur stabilite. Annali di Chimica. 1928;9:113–134.
Mladěnka P., Macáková K., Filipský T., et al. In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry. 2011;105(5):693–701. doi: 10.1016/j.jinorgbio.2011.02.003. PubMed DOI
Hider R. C., Liu Z. D., Khodr H. H. Metal chelation of polyphenols. Methods in Enzymology. 2001;335:190–203. doi: 10.1016/s0076-6879(01)35243-6. PubMed DOI
Perron N. R., Brumaghim J. L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics. 2009;53(2):75–100. doi: 10.1007/s12013-009-9043-x. PubMed DOI
Říha M., Karlíčková J., Filipský T., et al. In vitro evaluation of copper-chelating properties of flavonoids. RSC Advances. 2014;4(62):32628–32638. doi: 10.1039/c4ra04575k. PubMed DOI
Mira L., Fernandez M. T., Santos M., Rocha R., Florêncio M. H., Jennings K. R. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research. 2002;36(11):1199–1208. doi: 10.1080/1071576021000016463. PubMed DOI
Chen X., Tang L.-J., Sun Y.-N., Qiu P.-H., Liang G. Syntheses, characterization and antitumor activities of transition metal complexes with isoflavone. Journal of Inorganic Biochemistry. 2010;104(4):379–384. doi: 10.1016/j.jinorgbio.2009.11.008. PubMed DOI
Ullah M. F., Ahmad A., Zubair H., et al. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Molecular Nutrition & Food Research. 2011;55(4):553–559. doi: 10.1002/mnfr.201000329. PubMed DOI
Ullah M. F., Shamim U., Hanif S., Azmi A. S., Hadi S. M. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Molecular Nutrition & Food Research. 2009;53(11):1376–1385. doi: 10.1002/mnfr.200800547. PubMed DOI
Verma S. P., Goldin B. R. Effect of soy-derived isoflavonoids on the induced growth of MCF-7 cells by estrogenic environmental chemicals. Nutrition and Cancer. 1998;30(3):232–239. doi: 10.1080/01635589809514669. PubMed DOI
Cornell R. M., Schwertmann U. The Iron Oxides. Weinheim, Germany: Wiley-VCH; 2003. DOI
Ho K. P., Li L., Zhao L., Qian Z. M. Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Molecular and Cellular Biochemistry. 2003;247(1-2):219–222. doi: 10.1023/a:1024142004575. PubMed DOI
Khan H. Y., Zubair H., Ullah M. F., Ahmad A., Hadi S. M. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism. BioMetals. 2011;24(6):1169–1178. doi: 10.1007/s10534-011-9475-9. PubMed DOI
Spoerlein C., Mahal K., Schmidt H., Schobert R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. Journal of Inorganic Biochemistry. 2013;127:107–115. doi: 10.1016/j.jinorgbio.2013.07.038. PubMed DOI
Verma S. P., Goldin B. R. Copper modulates activities of genistein, nitric oxide, and curcumin in breast tumor cells. Biochemical and Biophysical Research Communications. 2003;310(1):104–108. doi: 10.1016/j.bbrc.2003.08.124. PubMed DOI
Gupte A., Mumper R. J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treatment Reviews. 2009;35(1):32–46. doi: 10.1016/j.ctrv.2008.07.004. PubMed DOI
Del Rio D., Rodriguez-Mateos A., Spencer J. P. E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants and Redox Signaling. 2013;18(14):1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC