Small-Angle X-ray Scattering Investigations of Biomolecular Confinement, Loading, and Release from Liquid-Crystalline Nanochannel Assemblies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26285865
DOI
10.1021/jz2014727
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This Perspective explores the recent progress made by means of small-angle scattering methods in structural studies of phase transitions in amphiphilic liquid-crystalline systems with nanochannel architectures and outlines some future directions in the area of hierarchically organized and stimuli-responsive nanochanneled assemblies involving biomolecules. Time-resolved small-angle X-ray scattering investigations using synchrotron radiation enable monitoring of the structural dynamics, the modulation of the nanochannel hydration, as well as the key changes in the soft matter liquid-crystalline organization upon stimuli-induced phase transitions. They permit establishing of the inner nanostructure transformation kinetics and determination of the precise sizes of the hydrophobic membraneous compartments and the aqueous channel diameters in self-assembled network architectures. Time-resolved structural studies accelerate novel biomedical, pharmaceutical, and nanotechnology applications of nanochannel soft materials by providing better control of DNA, peptide and protein nanoconfinement, and release from diverse stimuli-responsive nanocarrier systems.
Citace poskytuje Crossref.org
Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology