Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30023865
PubMed Central
PMC6044969
DOI
10.1021/acsomega.7b01935
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are bioactive lipids with considerable impact in medicine and nutrition. These compounds exert structuring effects on the cellular membrane organization, regulate the gene expression, and modulate various signaling cascades and metabolic processes. The purpose of the present work is to demonstrate the structural features of ω-3 PUFA-containing three-dimensional supramolecular lipid assemblies suitable for pharmaceutical applications that require soft porous carriers. We investigate the liquid crystalline structures formed upon mixing of eicosapentaenoic acid (EPA, 20:5) with the lyotropic nonlamellar lipid monoolein and the formation of multicompartment assemblies. Starting with the monoolein-based lipid cubic phase, double membrane vesicles, cubosome precursors, sponge-type particles (spongosomes), mixed intermediate nonlamellar structures, and multicompartment assemblies are obtained through self-assembly at different amphiphilic compositions. The dispersions containing spongosomes as well as nanocarriers with oil and vesicular compartments are stabilized by PEGylation of the lipid/water interfaces using a phospholipid with a poly(ethylene glycol) chain. The microstructures of the bulk mixtures were examined by cross-polarized light optical microscopy. The dispersed liquid crystalline structures and intermediate states were studied by small-angle X-ray scattering, cryogenic transmission electron microscopy, and quasielastic light scattering techniques. They established that PUFA influences the phase type and the sizes of the aqueous compartments of the liquid crystalline carriers. The resulting multicompartment systems and stealth nanosponges may serve as mesoporous reservoirs for coencapsulation of ω-3 PUFA (e.g., EPA) with water-insoluble drugs and hydrophilic macromolecules toward development of combination treatment strategies of neurodegenerative and other diseases.
Zobrazit více v PubMed
Björnmalm M.; Faria M.; Caruso F. Increasing the impact of materials in and beyond bio-nano science. J. Am. Chem. Soc. 2016, 138, 13449–13456. 10.1021/jacs.6b08673. PubMed DOI
Yoo J. W.; Irvine D. J.; Discher D. E.; Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discovery 2011, 10, 521–535. 10.1038/nrd3499. PubMed DOI
Azmi I. D.; Wibroe P. P.; Wu L. P.; Kazem A. I.; Amenitsch H.; Moghimi S. M.; Yaghmur A. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. J. Controlled Release 2016, 239, 1–9. 10.1016/j.jconrel.2016.08.011. PubMed DOI
Kirkensgaard J. J. K.; Evans M. E.; de Campo L.; Hyde S. T. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1271–1276. 10.1073/pnas.1316348111. PubMed DOI PMC
de Campo L.; Castle T.; Hyde S. T. Optimal packings of three-arm star polyphiles: from tricontinuous to quasi-uniformly striped bicontinuous forms. Interface Focus 2017, 7, 2016013010.1098/rsfs.2016.0130. PubMed DOI PMC
Boyd B. J.; Dong Y.-D.; Rades T. Nonlamellar liquid crystalline nanostructured particles: Advances in materials and structure determination. J. Liposome Res. 2009, 19, 12–23. 10.1080/08982100802691983. PubMed DOI
Hoppel M.; Caneri M.; Glatter O.; Valenta C. Self-assembled nanostructured aqueous dispersions as dermal delivery systems. Int. J. Pharm. 2015, 495, 459–462. 10.1016/j.ijpharm.2015.09.010. PubMed DOI
Ariga K.; Li J.; Fei J.; Ji Q.; Hill J. P. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv. Mater. 2016, 28, 1251–1286. 10.1002/adma.201502545. PubMed DOI
Angelova A.; Angelov B.; Mutafchieva R.; Lesieur S.; Couvreur P. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc. Chem. Res. 2011, 44, 147–156. 10.1021/ar100120v. PubMed DOI
Nilsson C.; Østergaard J.; Larsen S. W.; Larsen C.; Urtti A.; Yaghmur A. PEGylation of phytantriol-based lyotropic liquid crystalline particles - the effect of lipid composition, PEG chain length, and temperature on the internal nanostructure. Langmuir 2014, 30, 6398–6407. 10.1021/la501411w. PubMed DOI
Angelova A.; Angelov B.; Garamus V. M.; Couvreur P.; Lesieur S. Small-angle X-ray scattering investigations of biomolecular confinement, loading, and release from liquid-crystalline nanochannel assemblies. J. Phys. Chem. Lett. 2012, 3, 445–457. 10.1021/jz2014727. PubMed DOI
Gallová J.; Uhríková D.; Kučerka N.; Doktorovová S.; Funari S. S.; Teixeira J.; Balgavý P. The effects of cholesterol and β-sitosterol on the structure of saturated diacylphosphatidylcholine bilayers. Eur. Biophys. J. 2011, 40, 153–163. 10.1007/s00249-010-0635-6. PubMed DOI
Aleandri S.; Speziale C.; Mezzenga R.; Landau E. M. Design of light-triggered lyotropic liquid crystal mesophases and their application as molecular switches in ‘On demand’ release. Langmuir 2015, 31, 6981–6987. 10.1021/acs.langmuir.5b01945. PubMed DOI
Angelova A.; Angelov B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regener. Res. 2017, 12, 886–889. 10.4103/1673-5374.208546. PubMed DOI PMC
Esposito E.; Drechsler M.; Mariani P.; Panico A. M.; Cardile V.; Crascì L.; Carducci F.; Graziano A. C. E.; Cortesi R.; Puglia C. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater. Sci. Eng., C 2017, 71, 669–677. 10.1016/j.msec.2016.10.045. PubMed DOI
Boge L.; Bysell H.; Ringstad L.; Wennman D.; Umerska A.; Cassisa V.; Eriksson J.; Joly-Guillou M. L.; Edwards K.; Andersson M. Lipid-based liquid crystals as carriers for antimicrobial peptides: Phase behavior and antimicrobial effect. Langmuir 2016, 32, 4217–4228. 10.1021/acs.langmuir.6b00338. PubMed DOI
Angelova A.; Angelov B.; Mutafchieva R.; Lesieur S. Biocompatible mesoporous and soft nanoarchitectures. J. Inorg. Organomet. Polym. Mater. 2015, 25, 214–232. 10.1007/s10904-014-0143-8. DOI
Tran N.; Mulet X.; Hawley A. M.; Conn C. E.; Zhai J.; Waddington L. J.; Drummond C. J. First direct observation of stable internally ordered Janus nanoparticles created by lipid self-assembly. Nano Lett. 2015, 15, 4229–4233. 10.1021/acs.nanolett.5b01751. PubMed DOI
Shrestha R. G.; Abezgauz L.; Danino D.; Sakai K.; Sakai H.; Abe M. Structure and dynamics of poly(oxyethylene) cholesteryl ether wormlike micelles: rheometry, SAXS, and cryo-TEM studies. Langmuir 2011, 27, 12877–12883. 10.1021/la202879f. PubMed DOI
Tran T.; Siqueira S. D. V. S.; Amenitsch H.; Rades T.; Müllertz A. Monoacyl phosphatidylcholine inhibits the formation of lipid multilamellar structures during in vitro lipolysis of self-emulsifying drug delivery systems. Eur. J. Pharm. Sci. 2017, 108, 62–70. 10.1016/j.ejps.2016.11.022. PubMed DOI
Hyde S.Identification of Lyotropic Liquid Crystalline Mesophases. In Handbook of Applied Surface and Colloid Chemistry; Holmberg K., Ed.; John Wiley & Sons: Chichester, U.K., 2002; pp 299–320.
Chang D. P.; Jankunec M.; Barauskas J.; Tiberg F.; Nylander T. Adsorption of lipid liquid crystalline nanoparticles: effects of particle composition, internal structure, and phase behavior. Langmuir 2012, 28, 10688–10696. 10.1021/la301579g. PubMed DOI
Bastos M.; Silva T.; Teixeira V.; Nazmi K.; Bolscher J. G.; Funari S. S.; Uhríková D. Lactoferrin-derived antimicrobial peptide induces a micellar cubic phase in a model membrane system. Biophys. J. 2011, 101, L20–L22. 10.1016/j.bpj.2011.06.038. PubMed DOI PMC
Nilsson C.; Barrios-Lopez B.; Kallinen A.; Laurinmäki P.; Butcher S. J.; Raki M.; Weisell J.; Bergström K.; Larsen S. W.; Østergaard J.; Larsen C.; Urtti A.; Airaksinen A. J.; Yaghmur A. SPECT/CT imaging of radiolabeled cubosomes and hexosomes for potential theranostic applications. Biomaterials 2013, 34, 8491–8503. 10.1016/j.biomaterials.2013.07.055. PubMed DOI
Wadsäter M.; Barauskas J.; Nylander T.; Tiberg F. Formation of highly structured cubic micellar lipid nanoparticles of soy phosphatidylcholine and glycerol dioleate and their degradation by triacylglycerol lipase. ACS Appl. Mater. Interfaces 2014, 6, 7063–7069. 10.1021/am501489e. PubMed DOI
Angelov B.; Angelova A.; Filippov S. K.; Drechsler M.; Štěpánek P.; Lesieur S. Multicompartment lipid cubic nanoparticles with high protein upload: Millisecond dynamics of formation. ACS Nano 2014, 8, 5216–5226. 10.1021/nn5012946. PubMed DOI
Zhai J.; Tran N.; Sarkar S.; Fong C.; Mulet X.; Drummond C. J. Self-assembled lyotropic liquid crystalline phase behavior of monoolein–capric acid–phospholipid nanoparticulate systems. Langmuir 2017, 33, 2571–2580. 10.1021/acs.langmuir.6b04045. PubMed DOI
Angelov B.; Angelova A.; Garamus V. M.; Drechsler M.; Willumeit R.; Mutafchieva R.; Štěpánek P.; Lesieur S. Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles. Langmuir 2012, 28, 16647–16655. 10.1021/la302721n. PubMed DOI
Akhlaghi S. P.; Ribeiro I. R.; Boyd B. J.; Loh W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic() F127 cubosomes. Colloids Surf., B 2016, 145, 845–853. 10.1016/j.colsurfb.2016.05.091. PubMed DOI
Efrat R.; Kesselman E.; Aserin A.; Garti N.; Danino D. Solubilization of hydrophobic guest molecules in the monoolein discontinuous QL cubic mesophase and its soft nanoparticles. Langmuir 2009, 25, 1316–1326. 10.1021/la8016084. PubMed DOI
Góźdź W. T. Cubosome topologies at various particle sizes and crystallographic symmetries. Langmuir 2015, 31, 13321–13326. 10.1021/acs.langmuir.5b03799. PubMed DOI
Yaghmur A.; de Campo L.; Sagalowicz L.; Leser M. E.; Glatter O. Control of the internal structure of MLO-based isasomes by the addition of diglycerol monooleate and soybean phosphatidylcholine. Langmuir 2006, 22, 9919–9927. 10.1021/la061303v. PubMed DOI
Angelov B.; Angelova A.; Drechsler M.; Garamus V. M.; Mutafchieva R.; Lesieur S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter 2015, 11, 3686–3692. 10.1039/C5SM00169B. PubMed DOI
Nazaruk E.; Szlęzak M.; Górecka E.; Bilewicz R.; Osornio Y. M.; Uebelhart P.; Landau E. M. Design and assembly of pH-sensitive lipidic cubic phase matrices for drug release. Langmuir 2014, 30, 1383–1390. 10.1021/la403694e. PubMed DOI
Aleandri S.; Bandera D.; Mezzenga R.; Landau E. M. Biotinylated cubosomes: A versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir 2015, 31, 12770–12776. 10.1021/acs.langmuir.5b03469. PubMed DOI
Han S.; Shen J. Q.; Gan Y.; Geng H. M.; Zhang X. X.; Zhu C. L.; Gan L. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol. Sin. 2010, 31, 990–998. 10.1038/aps.2010.98. PubMed DOI PMC
Shen H. H.; Lake V.; Le Brun A. P.; James M.; Duff A. P.; Peng Y.; McLean K. M.; Hartley P. G. Targeted detection of phosphatidylserine in biomimetic membranes and in vitro cell systems using annexin V-containing cubosomes. Biomaterials 2013, 34, 8361–8369. 10.1016/j.biomaterials.2013.07.042. PubMed DOI
Neto C.; Giovanni Aloisi G.; Baglioni P.; Larsson K. Imaging soft matter with the atomic force microscope: Cubosomes and hexosomes. J. Phys. Chem. B 1999, 103, 3896–3899. 10.1021/jp984551b. DOI
Nilsson C.; Edwards K.; Eriksson J.; Larsen S. W.; Østergaard J.; Larsen C.; Urtti A.; Yaghmur A. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem. Langmuir 2012, 28, 11755–11766. 10.1021/la3021244. PubMed DOI
Boyd B. J.; Rizwan S. B.; Dong Y. D.; Hook S.; Rades T. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: Hexosomes are not necessarily flat hexagonal prisms. Langmuir 2007, 23, 12461–12464. 10.1021/la7029714. PubMed DOI
Oka T.; Ohta N. Two distinct cylinder arrangements in monodomains of a lyotropic liquid crystalline hexagonal II phase: Monodomains with straight cylinders and ringed cylinders in capillaries. Langmuir 2016, 32, 7613–7620. 10.1021/acs.langmuir.6b00996. PubMed DOI
Angelov B.; Garamus V. M.; Drechsler M.; Angelova A. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. J. Mol. Liq. 2017, 235, 83–89. 10.1016/j.molliq.2016.11.064. DOI
Rodrigues L.; Kyriakos K.; Schneider F.; Dietz H.; Winter G.; Papadakis C. M.; Hubert M. Characterization of lipid-based hexosomes as versatile vaccine carriers. Mol. Pharmaceutics 2016, 13, 3945–3954. 10.1021/acs.molpharmaceut.6b00716. PubMed DOI
Bye N.; Hutt O. E.; Hinton T. M.; Acharya D. P.; Waddington L. J.; Moffat B. A.; Wright D. K.; Wang H. X.; Mulet X.; Muir B. W. Nitroxide-loaded hexosomes provide MRI contrast in vivo. Langmuir 2014, 30, 8898–8906. 10.1021/la5007296. PubMed DOI
Valldeperas M.; Wiśniewska M.; Ram-On M.; Kesselman E.; Danino D.; Nylander T.; Barauskas J. Sponge phases and nanoparticle dispersions in aqueous mixtures of mono- and diglycerides. Langmuir 2016, 32, 8650–8659. 10.1021/acs.langmuir.6b01356. PubMed DOI
Angelov B.; Angelova A.; Mutafchieva R.; Lesieur S.; Vainio U.; Garamus V. M.; Jensen G. V.; Pedersen J. S. SAXS investigation of a cubic to a sponge (L3) phase transition in self-assembled lipid nanocarriers. Phys. Chem. Chem. Phys. 2011, 13, 3073–3081. 10.1039/C0CP01029D. PubMed DOI
Chen Y.; Angelova A.; Angelov B.; Drechsler M.; Garamus V. M.; Willumeit-Römer R.; Zou A. Sterically stabilized spongosomes for multi-drug delivery of anticancer nanomedicines. J. Mater. Chem. B 2015, 3, 7734–7744. 10.1039/C5TB01193K. PubMed DOI
Zou A.; Li Y.; Chen Y.; Angelova A.; Garamus V. M.; Li N.; Drechsler M.; Angelov B.; Gong Y. Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids Surf., B 2017, 153, 310–319. 10.1016/j.colsurfb.2017.02.031. PubMed DOI
Jang Y.; Chung H. J.; Hong J. W.; Yun C. W.; Chung H. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase. Acta Pharmacol. Sin. 2017, 38, 133–145. 10.1038/aps.2016.105. PubMed DOI PMC
Hazzah H. A.; Farid R. M.; Nasra M. M. A.; El-Massik M. A.; Abdallah O. Y. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: development and characterization. Int. J. Pharm. 2015, 492, 248–257. 10.1016/j.ijpharm.2015.06.022. PubMed DOI
Kulkarni C. V.; Yaghmur A.; Steinhart M.; Kriechbaum M.; Rappolt M. Effects of high pressure on internally self-assembled lipid nanoparticles: A synchrotron small-angle X-ray scattering (SAXS) study. Langmuir 2016, 32, 11907–11917. 10.1021/acs.langmuir.6b03300. PubMed DOI
de Campo L.; Yaghmur A.; Sagalowicz L.; Leser M. E.; Watzke H.; Glatter O. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 2004, 20, 5254–5261. 10.1021/la0499416. PubMed DOI
Yaghmur A.; Al-Hosayni S.; Amenitsch H.; Salentinig S. Structural investigation of bulk and dispersed inverse lyotropic hexagonal liquid crystalline phases of eicosapentaenoic acid monoglyceride. Langmuir 2017, 33, 14045–14057. 10.1021/acs.langmuir.7b03078. PubMed DOI
Huang Z.; Epand R. M. Study of the phase behaviour of fully hydrated saturated diacyl phosphatidylserine/fatty acid mixtures with 31P-NMR and calorimetry. Chem. Phys. Lipids 1997, 86, 161–169. 10.1016/S0009-3084(97)02666-2. DOI
Salentinig S.; Sagalowicz L.; Glatter O. Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir 2010, 26, 11670–11679. 10.1021/la101012a. PubMed DOI
Negrini R.; Mezzenga R. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir 2011, 27, 5296–5303. 10.1021/la200591u. PubMed DOI
Nakano M.; Teshigawara T.; Sugita A.; Leesajakul W.; Taniguchi A.; Kamo T.; Matsuoka H.; Handa T. Dispersions of liquid crystalline phases of the monoolein/oleic acid/Pluronic F127 system. Langmuir 2002, 18, 9283–9288. 10.1021/la026297r. DOI
Bazinet R. P.; Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. 10.1038/nrn3820. PubMed DOI
Cutuli D. Functional and structural benefits induced by omega-3 polyunsaturated fatty acids during aging. Curr. Neuropharmacol. 2017, 15, 534–542. 10.2174/1570159X14666160614091311. PubMed DOI PMC
Bowen K. J.; Harris W. S.; Kris-Etherton P. M. Omega-3 fatty acids and cardiovascular disease: Are there benefits?. Curr. Treat. Options Cardiovasc. Med. 2016, 18, 69.10.1007/s11936-016-0487-1. PubMed DOI PMC
Pinot M.; Vanni S.; Pagnotta S.; Lacas-Gervais S.; Payet L.-A.; Ferreira T.; Gautier R.; Goud B.; Antonny B.; Barelli H. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 2014, 345, 693–697. 10.1126/science.1255288. PubMed DOI
Feller S. E.; Gawrisch K.; MacKerell A. D. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc. 2002, 124, 318–326. 10.1021/ja0118340. PubMed DOI
Deng Y.; Almsherqi Z. A.; Shui G.; Wenk M. R.; Kohlwein S. D. Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria. FASEB J. 2009, 23, 2866–2871. 10.1096/fj.09-130435. PubMed DOI
Chong K.; Deng Y. The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy. Methods Cell Biol. 2012, 108, 317–343. 10.1016/B978-0-12-386487-1.00015-8. PubMed DOI
Levental K. R.; Lorent J. H.; Lin X.; Skinkle A. D.; Surma M. A.; Stockenbojer E. A.; Gorfe A. A.; Levental I. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys. J. 2016, 110, 1800–1810. 10.1016/j.bpj.2016.03.012. PubMed DOI PMC
Angelov B.; Angelova A. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. Nanoscale 2017, 9, 9797–9804. 10.1039/C7NR03454G. PubMed DOI
Shaikh S. R.; Rockett B. D.; Salameh M.; Carraway K. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells. J. Nutr. 2009, 139, 1632–1639. 10.3945/jn.109.108720. PubMed DOI
Shaikh S. R. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J. Nutr. Biochem. 2012, 23, 101–105. 10.1016/j.jnutbio.2011.07.001. PubMed DOI PMC
Urquhart R.; Chan R. Y.; Li O. T.; Tilley L.; Grieser F.; Sawyer W. H. Omega-6 and omega-3 fatty acids: monolayer packing and effects on bilayer permeability and cholesterol exchange. Biochem. Int. 1992, 26, 831–841. PubMed
Ehringer W.; Belcher D.; Wassall S.; Stillwell W. A comparison of the effects of linolenic (18:3) and docosahexaenoic (22:6) acids on phospholipid bilayers. Chem. Phys. Lipids 1990, 54, 79–88. 10.1016/0009-3084(90)90063-W. PubMed DOI
Dumaual A. C.; Jenski L. J.; Stillwell W. Liquid crystalline/gel state phase separation in docosahexaenoic acid-containing bilayers and monolayers. Biochim. Biophys. Acta 2000, 1463, 395–406. 10.1016/S0005-2736(99)00235-7. PubMed DOI
Wassall S. R.; Stillwell W. Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem. Phys. Lipids 2008, 153, 57–63. 10.1016/j.chemphyslip.2008.02.010. PubMed DOI
Talbot W. A.; Zheng L.; Lentz B. R. Acyl chain unsaturation and vesicle curvature alter outer leaflet packing and promote poly(ethylene glycol)-mediated membrane fusion. Biochemistry 1997, 36, 5827–5836. 10.1021/bi962437i. PubMed DOI
Haque M. E.; McIntosh T. J.; Lentz B. R. Influence of lipid composition on physical properties and PEG-mediated fusion of curved and uncurved model membrane vesicles: “Nature’s own” fusogenic lipid bilayer. Biochemistry 2001, 40, 4340–4348. 10.1021/bi002030k. PubMed DOI
Haque M. E.; Lentz B. R. Roles of curvature and hydrophobic interstice energy in fusion: Studies of lipid perturbant effects. Biochemistry 2004, 43, 3507–3517. 10.1021/bi035794j. PubMed DOI
Epand R. M.; Epand R. F.; Ahmed N.; Chen R. Promotion of hexagonal phase formation and lipid mixing by fatty acids with varying degrees of unsaturation. Chem. Phys. Lipids 1991, 57, 75–80. 10.1016/0009-3084(91)90051-C. PubMed DOI
Treen M.; Uauay R. D.; Jameson D. M.; Thomas V. L.; Hoffman R. R. Effect of docosahexaenoic acid on membrane fluidity and function in intact cultured Y-79 retinoblastoma cells. Arch. Biochem. Biophys. 1992, 294, 564–570. 10.1016/0003-9861(92)90726-D. PubMed DOI
Stulnig T. M.; Huber J.; Leitinger N.; Imre E. M.; Angelisova P.; Nowotny P.; Waldhausl W. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J. Biol. Chem. 2001, 276, 37335–37340. 10.1074/jbc.M106193200. PubMed DOI
Shaikh S. R.; Brown D. A. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids. Prostaglandins, Leukotrienes Essent. Fatty Acids 2013, 88, 21–25. 10.1016/j.plefa.2012.03.004. PubMed DOI PMC
Shaikh S. R.; Jolly C. A.; Chapkin R. S. n-3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization. Mol. Aspects Med. 2012, 33, 46–54. 10.1016/j.mam.2011.10.002. PubMed DOI PMC
Corsetto P. A.; Cremona A.; Montorfano G.; Jovenitti I. E.; Orsini F.; Arosio P.; Rizzo A. M. Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Cell Biochem. Biophys. 2012, 64, 45–59. 10.1007/s12013-012-9365-y. PubMed DOI
Bousquet M.; Calon F.; Cicchetti F. Impact of omega-3 fatty acids in Parkinson’s disease. Ageing Res. Rev. 2011, 10, 453–463. 10.1016/j.arr.2011.03.001. PubMed DOI
Calon F.; Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins, Leukotrienes Essent. Fatty Acids 2007, 77, 287–293. 10.1016/j.plefa.2007.10.019. PubMed DOI
Bourre J. M. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J. Nutr., Health Aging 2004, 8, 163–174. PubMed
Collie-Duguid E. S. R.; Wahle K. W. J. Inhibitory effect of fish oil n-3 polyunsaturated fatty acids on the expression of endothelial cell adhesion molecules. Biochem. Biophys. Res. Commun. 1996, 220, 969–974. 10.1006/bbrc.1996.0516. PubMed DOI
Bates E. J.; Ferrante A.; Harvey D. P.; Poulos A. Polyunsaturated fatty acids increase neutrophil adherence and integrin receptor expression. J. Leukocyte Biol. 1993, 53, 420–426. 10.1002/jlb.53.4.420. PubMed DOI
Florent S.; Malaplate-Armand C.; Youssef I.; Kriem B.; Koziel V.; Escanyé M.-C.; Fifre A.; Sponne I.; Leininger-Muller B.; Olivier J.-L.; Pillot T.; Oster T. Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-beta oligomers. J. Neurochem. 2006, 96, 385–395. 10.1111/j.1471-4159.2005.03541.x. PubMed DOI
Wang J.; Song M. Y.; Bae U. J.; Lim J. M.; Kwon K. S.; Park B. H. n-3 Polyunsaturated fatty acids protect against pancreatic β-cell damage due to ER stress and prevent diabetes development. Mol. Nutr. Food Res. 2015, 59, 1791–1802. 10.1002/mnfr.201500299. PubMed DOI
Sekikawa A.; Doyle M. F.; Kuller L. H. Recent findings of long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFAs) on atherosclerosis and coronary heart disease (CHD) contrasting studies in Western countries to Japan. Trends Cardiovasc. Med. 2015, 25, 717–723. 10.1016/j.tcm.2015.03.001. PubMed DOI
Ganança L.; Galfalvy H. C.; Oquendo M. A.; Hezghia A.; Cooper T. B.; Mann J. J.; Sublette M. E. Lipid correlates of antidepressant response to omega-3 polyunsaturated fatty acid supplementation: A pilot study. Prostaglandins, Leukotrienes Essent. Fatty Acids 2017, 119, 38–44. 10.1016/j.plefa.2017.03.004. PubMed DOI PMC
Czysz A. H.; Rasenick M. M. G-protein signaling, lipid rafts and the possible sites of action for the antidepressant effects of n-3 polyunsaturated fatty acids. CNS Neurol. Disord.: Drug Targets 2013, 12, 466–473. 10.2174/1871527311312040005. PubMed DOI PMC
Kristensen S.; Schmidt E. B.; Schlemmer A.; Rasmussen C.; Johansen M. B.; Christensen J. H. Beneficial effect of n-3 polyunsaturated fatty acids on inflammation and analgesic use in psoriatic arthritis: a randomized, double blind, placebo-controlled trial. Scand. J. Rheumatol. 2018, 47, 27–36. 10.1080/03009742.2017.1287304. PubMed DOI
Yaqoob P. Mechanisms underlying the immunomodulatory effects of n-3 PUFA. Proc. Nutr. Soc. 2010, 69, 311–315. 10.1017/S0029665110001837. PubMed DOI
Georgiou T.; Wen Y. T.; Chang C. H.; Kolovos P.; Kalogerou M.; Prokopiou E.; Neokleous A.; Huang C. T.; Tsai R. K. Neuroprotective Effects of omega-3 polyunsaturated fatty acids in a rat model of anterior ischemic optic neuropathy. Invest. Ophthalmol. Visual Sci. 2017, 58, 1603–1611. 10.1167/iovs.16-20979. PubMed DOI
Fritsche K. L.; Byrge M.; Feng C. Dietary omega-3 polyunsaturated fatty acids from fish oil reduce interleukin-12 and interferon-gamma production in mice. Immunol. Lett. 1999, 65, 167–173. 10.1016/S0165-2478(98)00109-6. PubMed DOI
Gorjão R.; Azevedo-Martins A. K.; Rodrigues H. G.; Abdulkader F.; Arcisio-Miranda M.; Procopio J.; Curi R. Comparative effects of DHA and EPA on cell function. Pharmacol. Ther. 2009, 122, 56–64. 10.1016/j.pharmthera.2009.01.004. PubMed DOI
Carpentier Y. A.; Hacquebard M. Intravenous lipid emulsions to deliver omega 3 fatty acids. Prostaglandins, Leukotrienes Essent. Fatty Acids 2006, 75, 145–148. 10.1016/j.plefa.2006.05.004. PubMed DOI
Shinde R. L.; Devarajan P. V. Docosahexaenoic acid-mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Delivery 2017, 24, 152–161. 10.1080/10717544.2016.1233593. PubMed DOI PMC
Guerzoni L. P. B.; Nicolas V.; Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res. 2017, 34, 492–505. 10.1007/s11095-016-2080-4. PubMed DOI
Lidich N.; Aserin A.; Garti N. Structural characteristics of oil-poor dilutable fish oil omega-3 microemulsions for ophthalmic applications. J. Colloid Interface Sci. 2016, 463, 83–92. 10.1016/j.jcis.2015.10.024. PubMed DOI
Desai A.; Vyas T.; Amiji M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J. Pharm. Sci. 2008, 97, 2745–2756. 10.1002/jps.21182. PubMed DOI
Angelova A.; Garamus V. M.; Angelov B.; Tian Z.; Li Y.; Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci. 2017, 249, 331–345. 10.1016/j.cis.2017.04.006. PubMed DOI
Zerkoune L.; Lesieur S.; Putaux J.-L.; Choisnard L.; Gèze A.; Wouessidjewe D.; Angelov B.; Vebert-Nardin C.; Doutch J.; Angelova A. Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. Soft Matter 2016, 12, 7539–7550. 10.1039/C6SM00661B. PubMed DOI
Hamilton J. A.; Cistola D. P. Transfer of oleic acid between albumin and phospholipid vesicles. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 82–86. 10.1073/pnas.83.1.82. PubMed DOI PMC
Cistola D. P.; Hamilton J. A.; Small D. M.; Jackson D. The ionization and phase behavior of fatty acids in water: Application of the Gibbs phase rule. Biochemistry 1988, 27, 1881–1888. 10.1021/bi00406a013. PubMed DOI
Börjesson S. I.; Hammarström S.; Elinder F. Lipoelectric modification of ion channel voltage gating by polyunsaturated fatty acids. Biophys. J. 2008, 95, 2242–2253. 10.1529/biophysj.108.130757. PubMed DOI PMC
Petrov I.; Angelova A. Interaction free energies in Langmuir-Blodgett multilayers of docosylammonium phosphate. Langmuir 1992, 8, 3109–3115. 10.1021/la00048a042. DOI
Blanchet C. E.; Spilotros A.; Schwemmer F.; Graewert M. A.; Kikhney A. G.; Jeffries C. M.; Franke D.; Mark D.; Zengerle R.; Cipriani F.; Fiedler S.; Roessle M.; Svergun D. I. Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J. Appl. Crystallogr. 2015, 48, 431–443. 10.1107/S160057671500254X. PubMed DOI PMC