Cubosomal lipid formulation of nitroalkene fatty acids: Preparation, stability and biological effects

. 2021 Oct ; 46 () : 102097. [epub] 20210808

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34418599
Odkazy

PubMed 34418599
PubMed Central PMC8385161
DOI 10.1016/j.redox.2021.102097
PII: S2213-2317(21)00256-1
Knihovny.cz E-zdroje

Lipid nitroalkenes - nitro-fatty acids (NO2-FAs) are formed in vivo via the interaction of reactive nitrogen species with unsaturated fatty acids. The resulting electrophilic NO2-FAs play an important role in redox homeostasis and cellular stress response. This study investigated the physicochemical properties and reactivity of two NO2-FAs: 9/10-nitrooleic acid (1) and its newly prepared 1-monoacyl ester, (E)-2,3-hydroxypropyl 9/10-nitrooctadec-9-enoate (2), both synthesized by a direct radical nitration approach. Compounds 1 and 2 were investigated in an aqueous medium and after incorporation into lipid nanoparticles prepared from 1-monoolein, cubosomes 1@CUB and 2@CUB. Using an electrochemical analysis and LC-MS, free 1 and 2 were found to be unstable under acidic conditions, and their degradation occurred in an aqueous environment within a few minutes or hours. This degradation was associated with the production of the NO radical, as confirmed by fluorescence assay. In contrast, preparations 1@CUB and 2@CUB exhibited a significant increase in the stability of the loaded 1 and 2 up to several days to weeks. In addition to experimental data, density functional theory-based calculation results on the electronic structure and structural variability (open and closed configuration) of 1 and 2 were obtained. Finally, experiments with a human HaCaT keratinocyte cell line demonstrated the ability of 1@CUB and 2@CUB to penetrate through the cytoplasmic membrane and modulate cellular pathways, which was exemplified by the Keap1 protein level monitoring. Free 1 and 2 and the cubosomes prepared from them showed cytotoxic effect on HaCaT cells with IC50 values ranging from 1 to 8 μM after 24 h. The further development of cubosomal preparations with embedded electrophilic NO2-FAs may not only contribute to the field of fundamental research, but also to their application using an optimized lipid delivery vehicle.

Zobrazit více v PubMed

Schopfer F.J., Khoo N.K.H. Nitro-fatty acid logistics: formation, biodistribution, signaling, and pharmacology. Trends Endocrinol. Metabol. 2019;30:505–519. PubMed PMC

Kansanen E., Jyrkkänen H.K., Volger O.L., Leinonen H., Kivelä A.M., Häkkinen S.K., Woodcock S.R., Schopfer F.J., Horrevoets A.J., Ylä-Herttuala S., Freeman B.A., Levonen A.L. Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J. Biol. Chem. 2009;284:33233–33241. PubMed PMC

Cui T., Schopfer F.J., Zhang J., Chen K., Ichikawa T., Baker P.R., Batthyany C., Chacko B.K., Feng X., Patel R.P., Agarwal A., Freeman B.A., Chen Y.E. Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J. Biol. Chem. 2006;281:35686–35698. PubMed PMC

Baker P.R., Lin Y., Schopfer F.J., Woodcock S.R., Groeger A.L., Batthyany C., Sweeney S., Long M.H., Iles K.E., Baker L.M., Branchaud B.P., Chen Y.E., Freeman B.A. Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 2005;280:42464–42475. PubMed PMC

Jobbagy S., Vitturi D.A., Salvatore S.R., Turell L., Pires M.F., Kansanen E., Batthyany C., Lancaster J.R., Jr., Freeman B.A., Schopfer F.J. Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol. 2019;21:101050. PubMed PMC

Kelley E.E., Batthyany C.I., Hundley N.J., Woodcock S.R., Bonacci G., Del Rio J.M., Schopfer F.J., Lancaster J.R., Jr., Freeman B.A., Tarpey M.M. Nitro-oleic acid, a novel and irreversible inhibitor of xanthine oxidoreductase. J. Biol. Chem. 2008;283:36176–36184. PubMed PMC

Schopfer F.J., Vitturi D.A., Jorkasky D.K., Freeman B.A. Nitro-fatty acids: new drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide. 2018;79:31–37. PubMed PMC

Freeman B.A., Baker P.R., Schopfer F.J., Woodcock S.R., Napolitano A., d'Ischia M. Nitro-fatty acid formation and signaling. J. Biol. Chem. 2008;283:15515–15519. PubMed PMC

Bonacci G., Baker P.R., Salvatore S.R., Shores D., Khoo N.K., Koenitzer J.R., Vitturi D.A., Woodcock S.R., Golin-Bisello F., Cole M.P., Watkins S., St Croix C., Batthyany C.I., Freeman B.A., Schopfer F.J. Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J. Biol. Chem. 2012;287:44071–44082. PubMed PMC

Turell L., Steglich M., Alvarez B. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols. Nitric Oxide. 2018;78:161–169. PubMed

Batthyany C., Schopfer F.J., Baker P.R., Durán R., Baker L.M., Huang Y., Cerveñansky C., Branchaud B.P., Freeman B.A. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 2006;281:20450–20463. PubMed PMC

Turell L., Vitturi D.A., Coitiño E.L., Lebrato L., Möller M.N., Sagasti C., Salvatore S.R., Woodcock S.R., Alvarez B., Schopfer F.J. The chemical basis of thiol addition to nitro-conjugated linoleic acid, a protective cell-signaling lipid. J. Biol. Chem. 2017;292:1145–1159. PubMed PMC

Khoo N.K., Schopfer F.J. Nitrated fatty acids: from diet to disease. Curr. Opin. Physiol. 2019;9:67–72. PubMed PMC

Zatloukalova M., Mojovic M., Pavicevic A., Kabelac M., Freeman B.A., Pekarova M., Vacek J. Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol. 2019;24:101213. PubMed PMC

Grippo V., Mojovic M., Pavicevic A., Kabelac M., Hubatka F., Turanek J., Zatloukalova M., Freeman B.A., Vacek J. Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes. Redox Biol. 2021;38:101756. PubMed PMC

Baker L.M.S., Baker P.R.S., Golin-Bisello F., Schopfer F.J., Fink M., Woodcock S.R., Branchaud B.P., Radi R., Freeman B.A. Nitro-fatty acid reaction with glutathione and cysteine: kinetic analysis of thiol alkylation by a Michael addition reaction. J. Biol. Chem. 2007;282:31085–31093. PubMed PMC

Franz J., Bereau T., Pannwitt S., Anbazhagan V., Lehr A., Nubbemeyer U., Dietz U., Bonn M., Weidner T., Schneider D. Nitrated fatty acids modulate the physical properties of model membranes and the structure of transmembrane proteins. Chem. Eur J. 2017;23:9690–9697. PubMed

Oliveira M.C., Yusupov M., Bogaerts A., Cordeiro R.M. How do nitrated lipids affect the properties of phospholipid membranes? Arch. Biochem. Biophys. 2020;695:108548. PubMed

Fazzari M., Khoo N.K.H., Woodcock S.R., Jorkasky D.K., Li L., Schopfer F.J., Freeman B.A. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment. J. Lipid Res. 2017;58:375–385. PubMed PMC

Schopfer F.J., Baker P.R., Giles G., Chumley P., Batthyany C., Crawford J., Patel R.P., Hogg N., Branchaud B.P., Lancaster J.R. Fatty acid transduction of nitric oxide signaling - nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J. Biol. Chem. 2005;280:19289–19297. PubMed

Rudolph V., Schopfer F.J., Khoo N.K., Rudolph T.K., Cole M.P., Woodcock S.R., Bonacci G., Groeger A.L., Golin-Bisello F., Chen C.-S. Nitro-fatty acid metabolome: saturation, desaturation, β-oxidation, and protein adduction. J. Biol. Chem. 2009;284:1461–1473. PubMed PMC

Gaballa S.A., El Garhy O.H., Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. J. Adv. Biomed. Pharm. Sci. 2020;3:1–9.

Angelova A., Drechsler M., Garamus V.M., Angelov B. Liquid crystalline nanostructures as PEGylated reservoirs of Omega-3 polyunsaturated fatty acids: structural insights toward delivery formulations against neurodegenerative disorders. ACS Omega. 2018;3:3235–3247. PubMed PMC

Barriga H.M.G., Holme M.N., Stevens M.M. Cubosomes: the next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. 2019;58:2958–2978. PubMed PMC

Mishra S., Chaturvedi D., Kumar N., Tandon P., Siesler H.W. An ab initio and DFT study of structure and vibrational spectra of γ form of oleic acid: comparison to experimental data. Chem. Phys. Lipids. 2010;163:207–217. PubMed

Scalmani G., Frisch M.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010;132:114110. PubMed

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT.

Qiu H., Caffrey M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials. 2000;21:223–234. PubMed

Maines M.D., Costa L.G., Reed D.J. John Wiley & Sons; New York: 1998. Current Protocols in Toxicology.

Mata-Perez C., Padilla M.N., Sánchez-Calvo B., Begara-Morales J.C., Valderrama R., Corpas F.J., Barroso J.B. Nitro-fatty acid detection in plants by high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry. Methods Mol. Biol. 2018;1747:231–239. PubMed

Coleman B.E., Cwynar V., Hart D.J., Havas F., Mohan J.M., Patterson S., Ridenour S., Schmidt M., Smith E., Wells A.J. Modular approach to the synthesis of unsaturated 1-monoacyl glycerols. Synlett. 2004;2004:1339–1342.

Woodcock S.R., Bonacci G., Gelhaus S.L., Schopfer F.J. Nitrated fatty acids: synthesis and measurement. Free Radic. Biol. Med. 2013;59:14–26. PubMed PMC

Maity S., Naveen T., Sharma U., Maiti D. Stereoselective nitration of olefins with t BuONO and TEMPO: direct access to nitroolefins under metal-free conditions. Org. Lett. 2013;15:3384–3387. PubMed

Fameau A.L., Arnould A., Saint-Jalmes A. Responsive self-assemblies based on fatty acids. Curr. Opin. Colloid Interface Sci. 2014;19:471–479.

Kulkarni C.V., Wachter W., Iglesias-Salto G., Engelskirchen S., Ahualli S. Monoolein: a magic lipid? Phys. Chem. Chem. Phys. 2011;13:3004–3021. PubMed

Havran L., Billova S., Palecek E. Electroactivity of avidin and streptavidin. Avidin signals at mercury and carbon electrodes respond to biotin binding. Electroanalysis. 2004;16:1139–1148.

Ye X., Kim W.-S., Rubakhin S.S., Sweedler J.V. Measurement of nitric oxide by 4,5-diaminofluorescein without interferences. Analyst. 2004;129:1200–1205. PubMed

Bobko A.A., Khramtsov V.V. Mechanistic studies of oxidative decomposition of Angeli’s salt and PAPA NONOate. Nitric Oxide. 2014;40:92–98. PubMed

Ali M.A., Kataoka N., Ranneh A.-H., Iwao Y., Noguchi S., Oka T., Itai S. Enhancing the solubility and oral bioavailability of poorly water-soluble drugs using monoolein cubosomes. Chem. Pharm. Bull. 2017;65:42–48. PubMed

Fong W.K., Negrini R., Vallooran J.J., Mezzenga R., Boyd B.J. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci. 2016;484:320–339. PubMed

Angelova A., Garamus V.M., Angelov B., Tian Z., Li Y., Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci. 2017;249:331–345. PubMed

Cherezov V., Clogston J., Papiz M.Z., Caffrey M. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 2006;357:1605–1618. PubMed

Liu W., Caffrey M. Gramicidin structure and disposition in highly curved membranes. J. Struct. Biol. 2005;150:23–40. PubMed

Misquitta Y., Caffrey M. Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys. J. 2003;85:3084–3096. PubMed PMC

Demurtas D., Guichard P., Martiel I., Mezzenga R., Hébert C., Sagalowicz L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat. Commun. 2015;6 PubMed PMC

Gustafsson J., Ljusberg-Wahren H., Almgren M., Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13:6964–6971.

Sagalowicz L., Michel M., Adrian M., Frossard P., Rouvet M., Watzke H.J., Yaghmur A., De Campo L., Glatter O., Leser M.E. Crystallography of dispersed liquid crystalline phases studied by cryo-transmission electron microscopy. J. Microsc. 2006;221:110–121. PubMed

Zeng P., Rao A., Wiedmann T.S., Bowles W. Solubility properties of chlorhexidine salts. Drug Dev. Ind. Pharm. 2009;35:172–176. PubMed

D’Amore A., Fazzari M., Jiang H.B., Luketich S.K., Luketich M.E., Hoff R., Jacobs D.L., Gu X., Badylak S.F., Freeman B.A., Wagner W.R. Nitro-oleic acid (NO2-OA) release enhances regional angiogenesis in a rat abdominal wall defect model. Tissue Eng. - Part A. 2018;24:889–904. PubMed PMC

Mathers A.R., Carey C.D., Killeen M.E., Diaz-Perez J.A., Salvatore S.R., Schopfer F.J., Freeman B.A., Falo L.D. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice. Allergy: Eur. J. Allergy Clin. Immunol. 2017;72:656–664. PubMed PMC

Mathers A.R., Carey C.D., Killeen M.E., Salvatore S.R., Ferris L.K., Freeman B.A., Schopfer F.J., Falo L.D. Topical electrophilic nitro-fatty acids potentiate cutaneous inflammation. Free Radic. Biol. Med. 2018;115:31–42. PubMed PMC

Wang P., Killeen M.E., Sumpter T.L., Ferris L.K., Falo L.D., Freeman B.A., Schopfer F.J., Mathers A.R. Electrophilic nitro-fatty acids suppress psoriasiform dermatitis: STAT3 inhibition as a contributory mechanism. Redox Biol. 2021;43:101987. PubMed PMC

Nazaruk E., Majkowska‐Pilip A., Bilewicz R. Lipidic cubic‐phase nanoparticles—cubosomes for efficient drug delivery to cancer cells. ChemPlusChem. 2017;82:570–575. PubMed

Dinkova-Kostova A.T., Kostov R.V., Canning P. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch. Biochem. Biophys. 2017;617:84–93. PubMed PMC

Saito R., Suzuki T., Hiramoto K., Asami S., Naganuma E., Suda H., Iso T., Yamamoto H., Morita M., Baird L., Furusawa Y., Negishi T., Ichinose M., Yamamoto M. Characterizations of three major cysteine sensors of Keap1 in stress response. Mol. Cell Biol. 2016;36:271–284. PubMed PMC

Buchan G.J., Bonacci G., Fazzari M., Salvatore S.R., Wendell S.G. Nitro-fatty acid formation and metabolism. Nitric Oxide. 2018;79:38–44. PubMed PMC

Fazzari M., Woodcock S.R., Rowart P., Ricart K., Lancaster J.R., Patel R.P., Vitturi D.A., Freeman B.A., Schopfer F.J. Endogenous generation of nitro-fatty acid hybrids having dual nitrate ester (RONO2) and nitroalkene (RNO2) substituents. Redox Biol. 2021;41:101913. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology

. 2023 Apr 18 ; 190 (5) : 187. [epub] 20230418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...