Electrophilic characteristics and aqueous behavior of fatty acid nitroalkenes
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P01 HL103455
NHLBI NIH HHS - United States
R01 HL064937
NHLBI NIH HHS - United States
R01 HL132550
NHLBI NIH HHS - United States
PubMed
33181478
PubMed Central
PMC7658499
DOI
10.1016/j.redox.2020.101756
PII: S2213-2317(20)30961-7
Knihovny.cz E-zdroje
- Klíčová slova
- Electrophile, Free radical, Micelle, Nitric oxide, Nitro-fatty acid,
- MeSH
- alkeny MeSH
- dusíkaté sloučeniny * MeSH
- mastné kyseliny * MeSH
- oxid dusnatý MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- alkeny MeSH
- dusíkaté sloučeniny * MeSH
- mastné kyseliny * MeSH
- oxid dusnatý MeSH
Fatty acid nitroalkenes (NO2-FA) are endogenously-generated products of the reaction of metabolic and inflammatory-derived nitrogen dioxide (.NO2) with unsaturated fatty acids. These species mediate signaling actions and induce adaptive responses in preclinical models of inflammatory and metabolic diseases. The nitroalkene substituent possesses an electrophilic nature, resulting in rapid and reversible reactions with biological nucleophiles such as cysteine, thus supporting post-translational modifications (PTM) of proteins having susceptible nucleophilic centers. These reactions contribute to enzyme regulation, modulation of inflammation and cell proliferation and the regulation of gene expression responses. Herein, focus is placed on the reduction-oxidation (redox) characteristics and stability of specific NO2-FA regioisomers having biological and clinical relevance; nitro-oleic acid (NO2-OA), bis-allylic nitro-linoleic acid (NO2-LA) and the conjugated diene-containing nitro-conjugated linoleic acid (NO2-cLA). Cyclic and alternating-current voltammetry and chronopotentiometry were used to the study of reduction potentials of these NO2-FA. R-NO2 reduction was observed around -0.8 V (vs. Ag/AgCl/3 M KCl) and is related to relative NO2-FA electrophilicity. This reduction process could be utilized for the evaluation of NO2-FA stability in aqueous milieu, shown herein to be pH dependent. In addition, electron paramagnetic resonance (EPR) spectroscopy was used to define the stability of the nitroalkene moiety under aqueous conditions, specifically under conditions where nitric oxide (.NO) release could be detected. The experimental data were supported by density functional theory calculations using 6-311++G (d,p) basis set and B3LYP functional. Based on experimental and computational approaches, the relative electrophilicities of these NO2-FA are NO2-cLA >> NO2-LA > NO2-OA. Micellarization and vesiculation largely define these biophysical characteristics in aqueous, nucleophile-free conditions. At concentrations below the critical micellar concentration (CMC), monomeric NO2-FA predominate, while at greater concentrations a micellar phase consisting of self-assembled lipid structures predominates. The CMC, determined by dynamic light scattering in 0.1 M phosphate buffer (pH 7.4) at 25 °C, was 6.9 (NO2-LA) 10.6 (NO2-OA) and 42.3 μM (NO2-cLA), respectively. In aggregate, this study provides new insight into the biophysical properties of NO2-FA that are important for better understanding the cell signaling and pharmacological potential of this class of mediators.
Zobrazit více v PubMed
Kalyanaraman S. Nitrated lipids: a class of cell-signaling molecules. Proc. Natl. Acad. Sci. U.S.A. 2004;101:11527–11528. PubMed PMC
Delmastro-Greenwood M., Freeman B.A., Wendell S.G. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Annu. Rev. Physiol. 2014;76:79–105. PubMed PMC
Bartesaghi S., Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–625. PubMed PMC
Bregere C., Rebrin I., Sohal R.S. Detection and characterization of in vivo nitration and oxidation of tryptophan residues in proteins. Methods Enzymol. 2008;441:339–349. PubMed PMC
Khan J., Brennan D.M., Bradley N., Gao B., Bruckdorfer R., Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem. J. 1998;330:795–801. PubMed PMC
Tsikas D., Zoerner A.A., Jordan J. Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim. Biophys. Acta. 2011;1811:694–705. PubMed
Baker P.R.S., Schopfer F.J., Sweeney S., Freeman B.A. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc. Natl. Acad. Sci. U.S.A. 2004;101:11577–11582. PubMed PMC
Balazy M., Poff C.D. Biological nitration of arachidonic acid. Curr. Vasc. Pharmacol. 2004;2:81–93. PubMed
Deen A.J., Sihvola V., Harkonen J., Patinen T., Adinolfi S., Levonen A.L. Regulation of stress signaling pathways by nitro-fatty acids. Nitric Oxide : biology and chemistry. 2018;78:170–175. PubMed
Melo T., Montero-Bullon J.F., Domingues P., Domingues M.R. Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches. Redox Biol. 2019;23:101106. PubMed PMC
Schopfer F.J., Vitturi D.A., Jorkasky D.K., Freeman B.A. Nitro-fatty acids: new drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide : biology and chemistry. 2018;79:31–37. PubMed PMC
Freeman B.A., Pekarova M., Rubbo H., Trostchansky A. In: Nitric Oxide: Biology and Pathobiology. third ed. Ignarro L.J., Freeman B.A., editors. Elsevier; London, England: 2017. Electrophilic nitro-fatty acids: nitric oxide and nitrite-derived metabolic and inflammatory signaling mediators; pp. 213–229.
Carey F.A., Sundberg R.J. fifth ed. Springer US; 2007. Advanced Organic Chemistry: Part B: Reaction and Synthesis.
Turell L., Vitturi D.A., Coitino E.L., Lebrato L., Moller M.N., Sagasti C., Salvatore S.R., Woodcock S.R., Alvarez B., Schopfer F.J. The chemical basis of thiol addition to nitro-conjugated linoleic acid, a protective cell-signaling lipid. J. Biol. Chem. 2017;292:1145–1159. PubMed PMC
Baker P.R.S., Schopfer F.J., O'Donnell V.B., Freeman B.A. Convergence of nitric oxide and lipid signaling: anti-inflammatory nitro-fatty acids. Free Radic. Biol. Med. 2009;46:989–1003. PubMed PMC
Schopfer F.J., Cipollina C., Freeman B.A. Formation and signaling actions of electrophilic lipids. Chem. Rev. 2012;111:5997–6021. PubMed PMC
Batthyany C., Schopfer F.J., Baker P.R.S., Duran R., Baker L.M.S., Huang Y., Cervenansky C., Branchaud B.P., Freeman B.A. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 2006;281:20450–20463. PubMed PMC
Gorczynski M.J., Huang J., Lee H., King S.B. Evaluation of nitroalkenes as nitric oxide donors. Bioorg. Med. Chem. Lett. 2007;17:2013–2017. PubMed
Lim D.G., Sweeney S., Bloodsworth A., White C.R., Chumley P.H., Krishna N.R., Schopfer F., O'Donnell V.B., Eiserich J.P., Freeman B.A. Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity. Proc. Natl. Acad. Sci. U.S.A. 2002;99:15941–15946. PubMed PMC
Schopfer F.J., Baker P.R.S., Giles G., Chumley P., Batthyany C., Crawford J., Patel R.P., Hogg N., Branchaud B.P., Lancaster J.R., Jr., Freeman B.A. Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J. Biol. Chem. 2005;280:19289–19297. PubMed
Lima E.S., Bonini M.G., Augusto O., Barbeiro H.V., Souza H.P., Abdalla D.S.P. Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic. Biol. Med. 2005;39:532–539. PubMed
Cammack R., Joannou C.L., Cui X.Y., Torres Martinez C., Maraj S.R., Hughes M.N. Nitrite and nitrosyl compounds in food preservation. Biochim. Biophys. Acta. 1999;1411:475–488. PubMed
Hughan K.S., Wendell S.G., Delmastro-Greenwood M., Helbling N., Corey C., Bellavia L., Potti G., Grimes G., Goodpaster B., Kim-Shapiro D.B., Shiva S., Freeman B.A., Gladwin M.T. Conjugated linoleic acid modulates clinical responses to oral nitrite and nitrate. Hypertension. 2017;70:634–644. PubMed PMC
Fazzari M., Trostchansky A., Schopfer F.J., Salvatore S.R., Sanchez-Calvo B., Vitturi D., Valderrama R., Barroso J.B., Radi R., Freeman B.A., Rubbo H. Olives and olive oil are sources of electrophilic fatty acid nitroalkenes. PloS One. 2014;9 PubMed PMC
Charles R.L., Rudyk O., Prysyazhna O., Kamynina A., Yang J., Morisseau C., Hammock B.D., Freeman B.A., Eaton P. Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. U.S.A. 2014;111:8167–8172. PubMed PMC
Nadtochiy S.M., Redman E.K. Mediterranean diet and cardioprotection: the role of nitrite, polyunsaturated fatty acids, and polyphenols. Nutrition. 2011;27:733–744. PubMed PMC
Buchan G.J., Bonacci G., Fazzari M., Salvatore S.R., Gelhaus Wendell S. Nitro-fatty acid formation and metabolism. Nitric Oxide : biology and chemistry. 2018;79:38–44. PubMed PMC
Balazy M., Iesaki T., Park J.L., Jiang H., Kaminski P.M., Wolin M.S. Vicinal nitrohydroxyeicosatrienoic acids: vasodilator lipids formed by reaction of nitrogen dioxide with arachidonic acid. J. Pharmacol. Exp. Therapeut. 2001;299:611–619. PubMed
Tsikas D., Zoerner A.A., Mitschke A., Gutzki F.M. Nitro-fatty acids occur in human plasma in the picomolar range: a targeted nitro-lipidomics GC-MS/MS study. Lipids. 2009;44:855–865. PubMed
Baker L.M.S., Baker P.R.S., Golin-Bisello F., Schopfer F.J., Fink M., Woodcock S.R., Branchaud B.P., Radi R., Freeman B.A. Nitro-fatty acid reaction with glutathione and cysteine: kinetic analysis of thiol alkylation by a Michael addition reaction. J. Biol. Chem. 2007;282:31085–31093. PubMed PMC
Zatloukalova M., Mojovic M., Pavicevic A., Kabelac M., Freeman B.A., Pekarova M., Vacek J. Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol. 2019;24:101213. PubMed PMC
Woodcock S.R., Bonacci G., Gelhaus S.L., Schopfer F.J. Nitrated fatty acids: synthesis and measurement. Free Radic. Biol. Med. 2013;59:14–26. PubMed PMC
Zhu T.F., Budin I., Szostak J.W. Preparation of fatty acid micelles. Methods Enzymol. 2013:283–288. PubMed PMC
Chattopadhyay A., London E. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal. Biochem. 1984;139:408–412. PubMed
Mongay C., Cerda V. A Britton-Robinson buffer of known ionic strength. Ann. Chim. 1974;64:409–412.
Miteva M.A., Guyon F., Tuffery P. Frog2: efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res. 2010;38:W622–W627. PubMed PMC
Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeerschd T., Zurek E., Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012;4:17. PubMed PMC
Scalmani G., Frisch M.J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010;132:114110. PubMed
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. C.01, (Wallingford, CT). PubMed
Fameau A.L., Arnould A., Saint-Jalmes A. Responsive self-assemblies based on fatty acids. Curr. Opin. Colloid Interface Sci. 2014;19:471–479.
Richieri G.V., Ogata R.T., Kleinfeld A.M. A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J. Biol. Chem. 1992;267:23495–23501. PubMed
Delample M., Jerome F., Barrault J., Douliez J.P. Self-assembly and emulsions of oleic acid-oleate mixtures in glycerol. Green Chem. 2011;13:64–68.
Fan Y., Fang Y., Ma L., Jiang H. Investigation of micellization and vesiculation of conjugated linoleic acid by means of self-assembling and self-crosslinking. J. Surfactants Deterg. 2015;18:179–188.
Freeman B.A., Baker P.R.S., Schopfer F.J., Woodcock S.R., Napolitano A., D'Ischia M. Nitro-fatty acid formation and signaling. J. Biol. Chem. 2008;283:15515–15519. PubMed PMC
Kraiya C., Singh P., Todres Z.V., Evans D.H. Voltammetric studies of the reduction of cis- and trans-alpha-nitrostilbene. J. Electroanal. Chem. 2004;563:171–180.
Bard A.J., Faulkner L.R. John Willey & Sons; New York, USA: 2001. Electrochemical Methods: Fundamentals and Applications.
Havran L., Billova S., Palecek E. Electroactivity of avidin and streptavidin. Avidin signals at mercury and carbon electrodes respond to biotin binding. Electroanalysis. 2004;16:1139–1148.
Yoshimura T., Kotake Y. Spin trapping of nitric oxide with the iron-dithiocarbamate complex: chemistry and biology. Antioxidants Redox Signal. 2004;6:639–647. PubMed
Fujii S., Kobayashi K., Tagawa S., Yoshimura T. Reaction of nitric oxide with the iron(III) complex of N-(dithiocarboxy)sarcosine: a new type of reductive nitrosylation involving iron(IV) as an intermediates. J. Chem. Soc. Dalton Trans. 2000:3310–3315.
Nagano T., Yoshimura T. Bioimaging of nitric oxide. Chem. Rev. 2002;102:1235–1269. PubMed
Yordanov N.D., Iliev V., Shopov D., Jezierski A., Jezoswka-Trzebiatowska B. Studies of the intermolecular interactions of metal chelate complexes. II. EPR study on the interactions of metal chelate complexes NOx (x = 1 or 2) Inorg. Chim. Acta. 1982;60:9–15.
Applegate K.R., Glomset J.A. Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J. Lipid Res. 1986;27:658–680. PubMed
Feller S.E., Gawrisch K., MacKerell A.D., Jr. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc. 2002;124:318–326. PubMed
Gocen T., Haman Bayari S., Haluk Guven M. Linoleic acid and its potassium and sodium salts: a combined experimental and theoretical study. J. Mol. Struct. 2017;1150:68–81.
Klauda J.B., Monje V., Kim T., Im W. Improving the CHARMM force field for polyunsaturated fatty acid chains. J. Phys. Chem. B. 2012;116:9424–9431. PubMed
Rich M.R. Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations. Biochim. Biophys. Acta BBA - Mol. Cell Res. 1993;1178:87–96. PubMed
Schopfer F.J., Khoo N.K.H. Nitro-fatty acid logistics: formation, biodistribution, signaling, and pharmacology. Trends Endocrinol. Metabol. 2019;30:505–519. PubMed PMC
Turell L., Steglich M., Alvarez B. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols. Nitric Oxide : biology and chemistry. 2018;78:161–169. PubMed
Alexander R.L., Bates D.J.P., Wright M.W., King S.B., Morrow C.S. Modulation of nitrated lipid signaling by multidrug resistance protein 1 (MRP1): glutathione conjugation and MRP1-mediated efflux inhibit nitrolinoleic acid-induced, PPARÎł-dependent transcription activation. Biochemistry. 2006;45:7889–7896. PubMed
Fazzari M., Khoo N., Woodcock S.R., Li L., Freeman B.A., Schopfer F.J. Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides. Free Radic. Biol. Med. 2015;87:113–124. PubMed PMC
Salvatore S.R., Vitturi D.A., Baker P.R.S., Bonacci G., Koenitzer J.R., Woodcock S.R., Freeman B.A., Schopfer F.J. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J. Lipid Res. 2013;54:1998–2009. PubMed PMC
Vitturi D.A., Chen C.S., Woodcock S.R., Salvatore S.R., Bonacci G., Koenitzer J.R., Stewart N.A., Wakabayashi N., Kensler T.W., Freeman B.A., Schopfer F.J. Modulation of nitro-fatty acid signaling prostaglandin reductase-1 is a nitroalkene reductase. J. Biol. Chem. 2013;288:25626–25637. PubMed PMC
Woodcock S.R., Wendell S.G., Schopfer F.J., Freeman B.A. Synthesis of an electrophilic keto-tetraene 15-oxo-Lipoxin A4 methyl ester via a MIDA boronate. Tetrahedron Lett. 2018;59:3524–3527. PubMed PMC
Salvatore S.R., Vitturi D.A., Fazzari M., Jorkasky D.K., Schopfer F.J. Evaluation of 10-nitro oleic acid bio-elimination in rats and humans. Sci. Rep. 2017;7:39900. PubMed PMC
Lesur I., Textoris J., Loriod B., Courbon C., Garcia S., Leone M., Nguyen C. Gene expression profiles characterize inflammation stages in the acute lung injury in mice. PloS One. 2010;5:1–14. PubMed PMC
Schoneich C. Kinetics of thiol reactions. Methods Enzymol. 1995:45–55. PubMed
Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4:278–286. PubMed
Freeman B.A., O'Donnell V.B., Schopfer F.J. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide : biology and chemistry. 2018;77:106–111. PubMed PMC
Su Y.H., Wu S.S., Hu C.H. Release of nitric oxide from nitrated fatty acids: insights from computational chemistry. J. Chin. Chem. Soc. 2019;66:41–48.
Franz J., Bereau T., Pannwitt S., Anbazhagan V., Lehr A., Nubbemeyer U., Dietz U., Bonn M., Weidner T., Schneider D. Nitrated fatty acids modulate the physical properties of model membranes and the structure of transmembrane proteins. Chem. Eur J. 2017;23:9690–9697. PubMed
Fazzari M., Khoo N.K.H., Woodcock S.R., Jorkasky D.K., Li L., Schopfer F.J., Freeman B.A. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment. J. Lipid Res. 2017;58:375–385. PubMed PMC