Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery

. 2022 Jun 30 ; 12 (13) : . [epub] 20220630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35808102

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000447 "Structural Dynamics of Biomolecular Systems" (ELIBIO) European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000789 "Advanced research using high-intensity laser produced photons and particles" European Regional Development Fund
3+3 program, No. 204, item 27 from 25.03.2020 JINR, Dubna
WIUCASQD2019005 Wenzhou Institute, University of Chinese Academy of Sciences
31670841 National Natural Science Foundation China
ANR-11-IDEX-0003-02 "IDI 2017" IDEX Paris-Saclay Agence Nationale de la Recherche France

Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide-drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.

Zobrazit více v PubMed

Karlawish J., Jack C.R., Jr., Rocca W.A., Snyder H.M., Carrillo M.C. Alzheimer’s Disease: The next frontier—Special report. Alzheimer Dement. 2017;13:374–380. doi: 10.1016/j.jalz.2017.02.006. PubMed DOI

Alzheimer’s Association 2016 Alzheimer’s disease facts and figures. Alzheimer Dement. 2016;12:459–509. doi: 10.1016/j.jalz.2016.03.001. PubMed DOI

Scheltens P., Blennow K., Breteler M.M., de Strooper B., Frisoni G.B., Salloway S., Van der Flier W.M. Alzheimer’s disease. Lancet. 2016;388:505–517. doi: 10.1016/S0140-6736(15)01124-1. PubMed DOI

Aarsland D., Creese B., Politis M., Chaudhuri K.R., Ffytche D.H., Weiutraub D., Ballard C. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 2017;13:217–231. doi: 10.1038/nrneurol.2017.27. PubMed DOI PMC

Titova N., Padmakumar C., Lewis S.J.G., Chaudhuri K.R. Parkinson’s: A syndrome rather than a disease? J. Neural Transm. 2017;124:907–914. doi: 10.1007/s00702-016-1667-6. PubMed DOI PMC

Balestrino R., Schapira A.H.V. Parkinson disease. Eur. J. Neurol. 2020;27:27–42. doi: 10.1111/ene.14108. PubMed DOI

Jha N.K., Ojha S., Jha S.K., Dureja H., Singh S.K., Shukla S.D., Chellappan D.K., Gupta G., Bhardwaj S., Kumar N., et al. Evidence of coronavirus (CoV) pathogenesis and emerging pathogen SARS-CoV-2 in the nervous system: A review on neurological impairments and manifestations. J. Mol. Neurosci. 2021;71:2192–2209. doi: 10.1007/s12031-020-01767-6. PubMed DOI PMC

Liu J.M., Tan B.H., Wu S., Gui Y., Suo J.L., Li Y.C. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J. Med. Virol. 2020;93:1304–1313. doi: 10.1002/jmv.26570. PubMed DOI PMC

Tancheva L., Petralia M.C., Miteva S., Dragomanova S., Solak A., Kalfin R., Lazarova M., Yarkov D., Ciurleo R., Cavalli E., et al. Emerging neurological and psychobiological aspects of COVID-19 infection. Brain Sci. 2020;10:852. doi: 10.3390/brainsci10110852. PubMed DOI PMC

Nuzzo D., Cambula G., Bacile I., Rizzo M., Galia M., Mangiapane P., Scalisi L. Long-term brain disorders in post Covid-19 neurological syndrome (PCNS) patient. Brain Sci. 2021;11:454. doi: 10.3390/brainsci11040454. PubMed DOI PMC

Jakhmola S., Indari O., Chatterjee S., Jha H.C. SARS-CoV-2, an underestimated pathogen of the nervous system. SN Compr. Clin. Med. 2020;2:2137–2146. doi: 10.1007/s42399-020-00522-7. PubMed DOI PMC

Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202:415–424. doi: 10.1084/jem.20050828. PubMed DOI PMC

Al Saiegh F., Ghosh R., Leibold A., Avery M.B., Schmidt R.F., Theofanis T., Miuchtouris N., Philipp L., Peiper S.C., Wang Z.-X. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J. Neurol. Neurosurg. Psychiatry. 2020;91:846–848. doi: 10.1136/jnnp-2020-323522. PubMed DOI

Zubair A.S., Mcalpine L.S., Gardin T., Farhadian S., Kuruvilla D.E., Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol. 2020;77:1018–1027. doi: 10.1001/jamaneurol.2020.2065. PubMed DOI PMC

Nuzzo D., Picone P. Potential neurological effects of severe COVID-19 infection. Neurosci. Res. 2020;158:1–5. doi: 10.1016/j.neures.2020.06.009. PubMed DOI PMC

Iadecola C., Anrather J., Kamel H. Effects of COVID-19 on the nervous system. Cell. 2020;183:16–27. doi: 10.1016/j.cell.2020.08.028. PubMed DOI PMC

Pacheco-Herrero M., Soto-Rojas L.O., Harrington C.R., Flores-Martinez Y.M., Villegas-Rojas M.M., León-Aguilar A.M., Martínez-Gómez P.A., Campa-Córdoba B.B., Apátiga-Pérez R., Corniel-Taveras C.N., et al. Elucidating the neuropathologic mechanisms of SARS-CoV-2 infection. Front. Neurol. 2021;12:660087. doi: 10.3389/fneur.2021.660087. PubMed DOI PMC

Dziedzic A., Saluk-Bijak J., Miller E., Niemcewicz M., Bijak M. The impact of SARS-CoV-2 infection on the development of neurodegeneration in multiple sclerosis. Int. J. Mol. Sci. 2021;22:1804. doi: 10.3390/ijms22041804. PubMed DOI PMC

Chaudhry Z.L., Klenja D., Janjua N., Cami-Kobeci G., Ahmed B.Y. COVID-19 and Parkinson’s disease: Shared inflammatory pathways under oxidative stress. Brain Sci. 2020;10:807. doi: 10.3390/brainsci10110807. PubMed DOI PMC

Chaná-Cuevas P., Salles-Gándara P., Rojas-Fernandez A., Salinas-Rebolledo C., Milán-Solé A. The potential role of SARS-COV-2 in the pathogenesis of Parkinson’s disease. Front. Neurol. 2020;11:1044. doi: 10.3389/fneur.2020.01044. PubMed DOI PMC

Abate G., Memo M., Uberti D. Impact of COVID-19 on Alzheimer’s disease risk: Viewpoint for research action. Healthcare. 2020;8:30286. doi: 10.3390/healthcare8030286. PubMed DOI PMC

Varahachalam S.P., Lahooti B., Chamaneh M., Bagchi S., Chhibber T., Morris K., Bolanos J.F., Kim N.Y., Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-art and future prospects. Int. J. Nanomed. 2021;16:539–560. doi: 10.2147/IJN.S283686. PubMed DOI PMC

Saravanan M., Mostafavi E., Vincent S., Negash H., Andavar R., Perumal V., Barabadi H. Nanotechnology-based approaches for emerging and re-emerging viruses: Special emphasis on COVID-19. Microb. Pathog. 2021;156:104908. doi: 10.1016/j.micpath.2021.104908. PubMed DOI PMC

Cummings J.L., Morstorf T., Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer Res. Ther. 2014;6:37. doi: 10.1186/alzrt269. PubMed DOI PMC

Maiti P., Manna J., Dunbar G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017;6:28. doi: 10.1186/s40035-017-0099-z. PubMed DOI PMC

Capriotti T., Terzakis K. Parkinson disease. Home Healthc. Now. 2016;34:300–307. doi: 10.1097/NHH.0000000000000398. PubMed DOI

Asil S.M., Ahlawat J., Barroso G.G., Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater. Sci. 2020;8:4109–4128. doi: 10.1039/D0BM00809E. PubMed DOI PMC

Donaghue I.E., Tam R., Sefton M.V., Shoichet M.S. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J. Control. Release. 2014;190:219–227. doi: 10.1016/j.jconrel.2014.05.040. PubMed DOI

Angelova A., Angelov B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen. Res. 2017;12:886–889. doi: 10.4103/1673-5374.208546. PubMed DOI PMC

Wong K.H., Riaz M.K., Xie Y., Zhang X., Liu Q., Chen H., Bian Z., Chen X., Lu A., Yang Z. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int. J. Mol. Sci. 2019;20:381. doi: 10.3390/ijms20020381. PubMed DOI PMC

Géral C., Angelova A., Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: Emphasis on brain-derived neurotrophic factor (BDNF) Pharmaceutics. 2013;5:127–167. doi: 10.3390/pharmaceutics5010127. PubMed DOI PMC

Angelova A., Angelov B., Drechsler M., Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov. Today. 2013;18:1263–1271. doi: 10.1016/j.drudis.2013.07.010. PubMed DOI

Huttunen H.J., Saarma M. CDNF protein therapy in Parkinson’s disease. Cell Transpl. 2019;28:349–366. doi: 10.1177/0963689719840290. PubMed DOI PMC

Subbiah R., Guldberg R.E. Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv. Healthc. Mater. 2019;8:e1801000. doi: 10.1002/adhm.201801000. PubMed DOI

Ferenz K.B., Gast R.E., Rose K., Finger I.E., Hasche A., Krieglstein J. Nerve growth factor and brain-derived neurotrophic factor but not granulocyte colony-stimulating factor, nimodipine and dizocilpine, require ATP for neuroprotective activity after oxygen–glucose deprivation of primary neurons. Brain Res. 2012;1448:20–26. doi: 10.1016/j.brainres.2012.02.016. PubMed DOI

Levi-Montalcini R. Growth control of nerve cells by a protein factor and its antiserum: Discovery of this factor may provide new leads to understanding of some neurogenetic processes. Science. 1964;143:105–110. doi: 10.1126/science.143.3602.105. PubMed DOI

Ivanova L., Karelson M., Dobchev D.A. Identification of natural compounds against neurodegenerative diseases using in silico techniques. Molecules. 2018;23:1847. doi: 10.3390/molecules23081847. PubMed DOI PMC

Liu R., Hudalla G.A. Using self-assembling peptides to integrate biomolecules into functional supramolecular biomaterials. Molecules. 2019;24:1450. doi: 10.3390/molecules24081450. PubMed DOI PMC

Prakash A., Medhi B., Chopra K. Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-β induced experimental model of Alzheimer’s disease. Pharm. Biochem Behav. 2013;110:46–57. doi: 10.1016/j.pbb.2013.05.015. PubMed DOI

Lucini C., D’Angelo L., Cacialli P., Palladino A., De Girolamo P. BDNF, brain, and regeneration: Insights from zebrafish. Int. J. Mol. Sci. 2018;19:3155. doi: 10.3390/ijms19103155. PubMed DOI PMC

Numakawa T., Odaka H., Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int. J. Mol. Sci. 2018;19:3650. doi: 10.3390/ijms19113650. PubMed DOI PMC

Runeberg-Roos P., Piccinini E., Penttinen A.M., Mätlik K., Heikkinen H., Kuure S., Bespalov M.M., Peränen J., Garea-Rodríguez E., Fuchs E., et al. Developing therapeutically more efficient neurturin variants for treatment of Parkinson’s disease. Neurobiol. Dis. 2016;96:335–345. doi: 10.1016/j.nbd.2016.07.008. PubMed DOI

Fletcher J.L., Murray S.S., Xiao J. Brain-derived neurotrophin factor in central nervous system nyelination: A New mechanism to promote myelin plasticity and repair. Int. J. Mol. Sci. 2018;19:4131. doi: 10.3390/ijms19124131. PubMed DOI PMC

Sullivan A.M., Toulouse A. Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine Growth Factor Rev. 2011;22:157–165. doi: 10.1016/j.cytogfr.2011.05.001. PubMed DOI

Aron L., Klein R. Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci. 2011;34:88–100. doi: 10.1016/j.tins.2010.11.001. PubMed DOI

Paul G., Zachrisson O., Varrone A., Almqvist P., Jerling M., Lind G., Rehncrona S., Linderoth B., Bjartmarz H., Shafer L.L., et al. Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J. Clin. Investig. 2015;125:1339–1346. doi: 10.1172/JCI79635. PubMed DOI PMC

Dharmadana D., Adamcik J., Ryan T.M., Appiah Danso S., Chong C.J.H., Conn C.E., Reynolds N.P., Mezzenga R., Valéry C. Peptide substance P self-assembles into semi-flexible nanotubes that can be manipulated for nanotechnology. Nanoscale. 2020;12:22680–22687. doi: 10.1039/D0NR05622G. PubMed DOI

Schäbitz W.R., Krüger C., Pitzer C., Weber D., Laage R., Gassler N., Aronowski J., Mier W., Kirsch F., Dittgen T., et al. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF) J. Cereb. Blood Flow Metab. 2008;28:29–43. doi: 10.1038/sj.jcbfm.9600496. PubMed DOI

Bianchi V.E., Locatelli V., Rizzi L. Neurotrophic and neuroregenerative effects of GH/IGF1. Int. J. Mol. Sci. 2017;18:2441. doi: 10.3390/ijms18112441. PubMed DOI PMC

Pradhan K., Das G., Gupta V., Mondal P., Barman S., Khan J., Ghosh S. Discovery of neuroregenerative peptoid from amphibian neuropeptide that inhibits amyloid-β toxicity and crosses blood-brain barrier. ACS Chem. Neurosci. 2019;10:1355–1368. doi: 10.1021/acschemneuro.8b00427. PubMed DOI

Chermenina M., Schouten P., Nevalainen N., Johansson F., Orädd G., Strömberg I. GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum. Neuroscience. 2014;270:1–11. doi: 10.1016/j.neuroscience.2014.04.008. PubMed DOI

Grondin R., Littrell O.M., Zhang Z., Ai Y., Huettl P., Pomerleau F., Quintero J.E., Andersen A.H., Stenslik M.J., Bradley L.H., et al. GDNF revisited: A novel mammalian cell-derived variant form of GDNF increases dopamine turnover and improves brain biodistribution. Neuropharmacology. 2019;147:28–36. doi: 10.1016/j.neuropharm.2018.05.014. PubMed DOI

Ibáñez C.F., Andressoo J.O. Biology of GDNF and its receptors—Relevance for disorders of the central nervous system. Neurobiol. Dis. 2017;97:80–89. doi: 10.1016/j.nbd.2016.01.021. PubMed DOI

Smith R.C., O’Bryan L.M., Mitchell P.J., Leung D., Ghanem M., Wilson J.M., Hanson J.C., Sossick S., Cooper J., Huang L., et al. Increased brain bio-distribution and chemical stability and decreased immunogenicity of an engineered variant of GDNF. Exp. Neurol. 2015;267:165–176. doi: 10.1016/j.expneurol.2015.03.002. PubMed DOI

Tsai K.J., Tsai Y.C., Shen C.K. G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J. Exp. Med. 2007;204:1273–1280. doi: 10.1084/jem.20062481. PubMed DOI PMC

Sanchez-Ramos J., Song S., Sava V., Catlow B., Lin X., Mori T., Cao C., Arendash G.W. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience. 2009;163:55–72. doi: 10.1016/j.neuroscience.2009.05.071. PubMed DOI PMC

Schneider A., Krüger C., Steigleder T., Weber D., Pitzer C., Laage R., Aronowski J., Maurer M.H., Gassler N., Mier W., et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Investig. 2005;115:2083–2098. doi: 10.1172/JCI23559. PubMed DOI PMC

Nutt J.G., Burchiel K.J., Comella C.L., Jankovic J., Lang A.E., Laws E.R., Lozano A.M., Penn R.D., Simpson R.K., Stacy M., et al. Implanted intracerebroventricular. Glial cell line-derived neurotrophic factor. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60:69–73. doi: 10.1212/WNL.60.1.69. PubMed DOI

Gill S.S., Patel N.K., Hotton G.R., O’Sullivan K., McCarter R., Bunnage M., Brooks D.J., Svendsen C.N., Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 2003;9:589–595. doi: 10.1038/nm850. PubMed DOI

Whone A., Luz M., Boca M., Woolley M., Mooney L., Dharia S., Broadfoot J., Cronin D., Schroers C., Barua N.U., et al. Randomized trial of intermittent intraputamenal glial cell linederived neurotrophic factor in Parkinson’s disease. Brain. 2019;142:512–525. doi: 10.1093/brain/awz023. PubMed DOI PMC

Ramakrishna S., Muddashetty R.S. Emerging role of microRNAs in dementia. J. Mol. Biol. 2019;431:1743–1762. doi: 10.1016/j.jmb.2019.01.046. PubMed DOI

Chen S., Ge X., Chen Y., Lv N., Liu Z., Yuan W. Advances with RNA interference in Alzheimer’s disease research. Drug Des. Devel. Ther. 2013;7:117–125. doi: 10.2147/DDDT.S40229. PubMed DOI PMC

Miller V.M., Gouvion C.M., Davidson B.L., Paulson H.L. Targeting Alzheimer’s disease genes with RNA interference: An efficient strategy for silencing mutant alleles. Nucleic Acids Res. 2004;32:661–668. doi: 10.1093/nar/gkh208. PubMed DOI PMC

Hegarty S.V., Lee D.J., O’Keeffe G.W., Sullivan A.M. Effects of intracerebral neurotrophic factor application on motor symptoms in Parkinson’s disease: A systematic review and meta-analysis. Parkinsonism Relat. Disord. 2017;38:19–25. doi: 10.1016/j.parkreldis.2017.02.011. PubMed DOI

Wen Z., Yan Z., He R., Pang Z., Guo L., Qian Y., Jiang X., Fang L. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv. 2011;18:555–561. doi: 10.3109/10717544.2011.596583. PubMed DOI

Li X., Su J., Kamal Z., Guo P., Wu X., Lu L., Wu H., Qiu M. Odorranalectin modified PEG-PLGA/PEG-PBLG curcumin-loaded nanoparticle for intranasal administration. Drug Dev. Ind. Pharm. 2020;46:899–909. doi: 10.1080/03639045.2020.1762202. PubMed DOI

Ahirrao M., Shrotriya S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev. Ind. Pharm. 2017;43:1686–1693. doi: 10.1080/03639045.2017.1338721. PubMed DOI

Wu H., Li J., Zhang Q., Yan X., Guo L., Gao X., Qiu M., Jiang X., Lai R., Chen H. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β₂₅₋₃₅-treated rats following intranasal administration. Eur. J. Pharm. Biopharm. 2012;80:368–378. doi: 10.1016/j.ejpb.2011.10.012. PubMed DOI

Erdő F., Bors L.A., Farkas D., Bajza Á., Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. 2018;143:155–170. doi: 10.1016/j.brainresbull.2018.10.009. PubMed DOI

Samaridou E., Alonso M.J. Nose-to-brain peptide delivery—The potential of nanotechnology. Bioorg. Med. Chem. 2018;26:2888–2905. doi: 10.1016/j.bmc.2017.11.001. PubMed DOI

Sajja R.K., Cudic P., Cucullo L. In vitro characterization of odorranalectin for peptide-based drug delivery across the blood-brain barrier. BMC Neurosci. 2019;20:22. doi: 10.1186/s12868-019-0504-x. PubMed DOI PMC

Fan Y., Chen M., Zhang J., Maincent P., Xia X., Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit. Rev. Ther. Drug Carr. Syst. 2018;35:433–467. doi: 10.1615/CritRevTherDrugCarrierSyst.2018024697. PubMed DOI

Lochhead J.J., Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012;64:614–628. doi: 10.1016/j.addr.2011.11.002. PubMed DOI

Lochhead J.J., Wolak D.J., Pizzo M.E., Thorne R.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J. Cereb. Blood Flow Metab. 2015;35:371–381. doi: 10.1038/jcbfm.2014.215. PubMed DOI PMC

Alcalá-Barraza S.R., Lee M.S., Hanson L.R., McDonald A.A., Frey W.H., McLoon L.K. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J. Drug Target. 2010;18:179–190. doi: 10.3109/10611860903318134. PubMed DOI PMC

Kirik D., Cederfjäll E., Halliday G., Petersén Å. Gene therapy for Parkinson’s disease: Disease modification by GDNF family of ligands. Neurobiol. Dis. 2017;97 Pt B:179–188. doi: 10.1016/j.nbd.2016.09.008. PubMed DOI

Yoon J.Y., Yang K.J., Park S.N., Kim D.K., Kim J.D. The effect of dexamethasone/cell-penetrating peptide nanoparticles on gene delivery for inner ear therapy. Int. J. Nanomed. 2016;11:6123–6134. doi: 10.2147/IJN.S114241. PubMed DOI PMC

Bartus R.T., Baumann T.L., Siffert J., Herzog C.D., Alterman R., Boulis N., Turner D.A., Stacy M., Lang A.E., Lozano A.M., et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80:1698–1701. doi: 10.1212/WNL.0b013e3182904faa. PubMed DOI PMC

Marks W.J., Jr., Ostrem J.L., Verhagen L., Starr P.A., Larson P.S., Bakay R.A., Taylor R., Cahn-Weiner D.A., Stoessl A.J., Olanow C.W., et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: An open-label, phase I trial. Lancet Neurol. 2008;7:400–408. doi: 10.1016/S1474-4422(08)70065-6. PubMed DOI

Marks W.J., Jr., Bartus R.T., Siffert J., Davis C.S., Lozano A., Boulis N., Vitek J., Stacy M., Turner D., Verhagen L., et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: A double-blind, randomised, controlled trial. Lancet Neurol. 2010;9:1164–1172. doi: 10.1016/S1474-4422(10)70254-4. PubMed DOI

Richardson R.T., Wise A.K., Thompson B.C., Flynn B.O., Atkinson P.J., Fretwell N.J., Fallon J.B., Wallace G.G., Shepherd R.K., Clark G.M., et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials. 2009;30:2614–2624. doi: 10.1016/j.biomaterials.2009.01.015. PubMed DOI PMC

Kikkawa Y.S., Nakagawa T., Ying L., Tabata Y., Tsubouchi H., Ido A., Ito J. Growth factor-eluting cochlear implant electrode: Impact on residual auditory function, insertional trauma, and fibrosis. J. Transl. Med. 2014;12:280. doi: 10.1186/s12967-014-0280-4. PubMed DOI PMC

Chikar J.A., Hendricks J.L., Richardson-Burns S.M., Raphael Y., Pfingst B.E., Martin D.C. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials. 2012;33:1982–1990. doi: 10.1016/j.biomaterials.2011.11.052. PubMed DOI PMC

Endo T., Nakagawa T., Kita T., Iguchi F., Kim T.S., Tamura T., Iwai K., Tabata Y., Ito J. Novel strategy for treatment of inner ears using a biodegradable gel. Laryngoscope. 2005;115:2016–2020. doi: 10.1097/01.mlg.0000183020.32435.59. PubMed DOI

Madduri S., Gander B. Growth factor delivery systems and repair strategies for damaged peripheral nerves. J. Control. Release. 2012;161:274–282. doi: 10.1016/j.jconrel.2011.11.036. PubMed DOI

Wang Y., Wise A.K., Tan J., Maina J.W., Shepherd R.K., Caruso F. Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small. 2014;10:4244–4248. doi: 10.1002/smll.201470132. PubMed DOI

Li H., Edin F., Hayashi H., Gudjonsson O., Danckwardt-Lillieström N., Engqvist H., Rask-Andersen H., Xia W. Guided growth of auditory neurons: Bioactive particles towards gapless neural-electrode interface. Biomaterials. 2017;122:1–9. doi: 10.1016/j.biomaterials.2016.12.020. PubMed DOI

Roy S., Glueckert R., Johnston A.H., Perrier T., Bitsche M., Newman T.A., Saulnier P., Schrott-Fischer A. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine. 2012;7:55–63. doi: 10.2217/nnm.11.84. PubMed DOI

Mitra S., Behbahani H., Eriksdotter M. Innovative therapy for Alzheimer’s disease with focus on biodelivery of NGF. Front. Neurosci. 2019;13:38. doi: 10.3389/fnins.2019.00038. PubMed DOI PMC

Xi Y., Chen Y., Jin Y., Han G., Song M., Song T., Shi Y., Tao L., Huang Z., Zhou J., et al. Versatile nanomaterials for Alzheimer’s disease: Pathogenesis inspired disease-modifying therapy. J. Control Release. 2022;345:38. doi: 10.1016/j.jconrel.2022.02.034. PubMed DOI

Akel H., Ismail R., Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease. Eur. J. Pharm. Biopharm. 2020;148:38–53. doi: 10.1016/j.ejpb.2019.12.014. PubMed DOI

Babazadeh A., Mohammadi Vahed F., Jafari S.M. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J. Control. Release. 2020;321:211–221. doi: 10.1016/j.jconrel.2020.02.015. PubMed DOI

Sonvico F., Clementino A., Buttini F., Colombo G., Pescina S., Stanisçuaski Guterres S., Raffin Pohlmann A., Nicoli S. Surface-modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting. Pharmaceutics. 2018;10:34. doi: 10.3390/pharmaceutics10010034. PubMed DOI PMC

Jao D., Xue Y., Medina J., Hu X. Protein-based drug-delivery materials. Materials. 2017;10:517. doi: 10.3390/ma10050517. PubMed DOI PMC

Goldsmith M., Abramovitz L., Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano. 2014;8:1958–1965. doi: 10.1021/nn501292z. PubMed DOI

Agrahari V., Burnouf P.A., Burnouf T., Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv. Drug Deliv. Rev. 2019;148:146–180. doi: 10.1016/j.addr.2019.02.008. PubMed DOI

Teixeira M.I., Lopes C.M., Amaral M.H., Costa P.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm. 2020;149:192–217. doi: 10.1016/j.ejpb.2020.01.005. PubMed DOI

Harilal S., Jose J., Parambi D.G.T., Kumar R., Mathew G.E., Uddin M.S., Kim H., Mathew B. Advancements in nanotherapeutics for Alzheimer’s disease: Current perspectives. J. Pharm. Pharmacol. 2019;71:1370–1383. doi: 10.1111/jphp.13132. PubMed DOI

Zorkina Y., Abramova O., Ushakova V., Morozova A., Zubkov E., Valikhov M., Melnikov P., Majouga A., Chekhonin V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules. 2020;25:5294. doi: 10.3390/molecules25225294. PubMed DOI PMC

Yokel R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine. 2020;15:409–432. doi: 10.2217/nnm-2019-0169. PubMed DOI

Wen M.M., El-Salamouni N.S., El-Refaie W.M., Hazzah H.A., Ali M.M., Tosi G., Farid R.M., Blanco-Prieto M.J., Billa N., Hanafy A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release. 2017;245:95–107. doi: 10.1016/j.jconrel.2016.11.025. PubMed DOI

Sahni J.K., Doggui S., Ali J., Baboota S., Dao L., Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J. Control. Release. 2011;152:208–231. doi: 10.1016/j.jconrel.2010.11.033. PubMed DOI

Brambilla D., Le Droumaguet B., Nicolas J., Hashemi S.H., Wu L.P., Moghimi S.M., Couvreur P., Andrieux K. Nanotechnologies for Alzheimer’s disease: Diagnosis, therapy, and safety issues. Nanomedicine. 2011;7:521–540. doi: 10.1016/j.nano.2011.03.008. PubMed DOI

Saeedi M., Eslamifar M., Khezri K., Dizaj S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharm. 2019;111:666–675. doi: 10.1016/j.biopha.2018.12.133. PubMed DOI

Pires P.C., Santos A.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J. Control. Release. 2018;270:89–100. doi: 10.1016/j.jconrel.2017.11.047. PubMed DOI

Géral C., Angelova A., Angelov B., Nicolas V., Lesieur S. Chapter 11: Multicompartment lipid nanocarriers for targeting of cells expressing brain receptors. In: Garti N., Mezzenga R., Somasundaran P., editors. Self-Assembled Supramolecular Architectures: Lyotropic Liquid Crystals. John Wiley & Sons, Inc.; New Jersey, NJ, USA: 2012. pp. 319–355. DOI

Liaw K., Zhang Z., Kannan S. Neuronanotechnology for brain regeneration. Adv. Drug Deliv. Rev. 2019;148:3–18. doi: 10.1016/j.addr.2019.04.004. PubMed DOI

Li Y., Liu C. Nanomaterial-based bone regeneration. Nanoscale. 2017;9:4862–4874. doi: 10.1039/C7NR00835J. PubMed DOI

Bu M., Tang J., Wei Y., Sun Y., Wang X., Wu L., Liu H. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea. Int. J. Nanomed. 2015;10:6879–6889. doi: 10.2147/IJN.S82944. PubMed DOI PMC

Guccione C., Oufir M., Piazzini V., Eigenmann D.E., Jähne E.A., Zabela V., Faleschini M.T., Bergonzi M.C., Smiesko M., Hamburger M., et al. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line. Eur. J. Pharm. Biopharm. 2017;119:253–263. doi: 10.1016/j.ejpb.2017.06.018. PubMed DOI

Saraiva C., Praça C., Ferreira R., Santos T., Ferreira L., Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release. 2016;235:34–47. doi: 10.1016/j.jconrel.2016.05.044. PubMed DOI

Zhang T.T., Li W., Meng G., Wang P., Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater. Sci. 2016;4:219–229. doi: 10.1039/C5BM00383K. PubMed DOI

Agrawal M., Ajazuddin Tripathi D.K., Saraf S., Saraf S., Antimisiaris S.G., Mourtas S., Hammarlund-Udenaes M., Alexander A. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release. 2017;260:61–77. doi: 10.1016/j.jconrel.2017.05.019. PubMed DOI

Sharma G., Sharma A.R., Lee S.S., Bhattacharya M., Nam J.S., Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int. J. Pharm. 2019;559:360–372. doi: 10.1016/j.ijpharm.2019.01.056. PubMed DOI

Kim J., Ahn S.I., Kim Y. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J. Ind. Eng. Chem. 2019;73:8–18. doi: 10.1016/j.jiec.2019.01.021. PubMed DOI PMC

Raj R., Wairkar S., Sridhar V., Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol. 2018;109:27–35. doi: 10.1016/j.ijbiomac.2017.12.056. PubMed DOI

Eskinazi-Budge A., Manickavasagam D., Czech T., Novak K., Kunzler J., Oyewumi M.O. Preparation of emulsifying wax/glyceryl monooleate nanoparticles and evaluation as a delivery system for repurposing simvastatin in bone regeneration. Drug Dev. Ind. Pharm. 2018;44:1583–1590. doi: 10.1080/03639045.2018.1483381. PubMed DOI

Elnaggar Y.S., Etman S.M., Abdelmonsif D.A., Abdallah O.Y. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: Pharmaceutical, biological, and toxicological studies. Int. J. Nanomed. 2015;10:5459–5473. doi: 10.2147/IJN.S87336. PubMed DOI PMC

Li Y., Song H., Xiong S., Tian T., Liu T., Sun Y. Chitosan-stablized bovine serum albumin nanoparticles having ability to control the release of NELL-1 protein. Int. J. Biol. Macromol. 2018;109:672–680. doi: 10.1016/j.ijbiomac.2017.12.104. PubMed DOI

Chatterjee B., Gorain B., Mohananaidu K., Sengupta P., Mandal U.K., Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm. 2019;565:258–268. doi: 10.1016/j.ijpharm.2019.05.032. PubMed DOI

Oshiro J.A., Sato M.R., Scardueli C.R., Lopes de Oliveira G.J.P., Abucafy M.P., Chorilli M. Bioactive molecule-loaded drug delivery systems to optimize bone tissue repair. Curr. Protein Pept. Sci. 2017;18:850–863. doi: 10.2174/1389203718666170328111605. PubMed DOI

Chung E.P., Cotter J.D., Prakapenka A.V., Cook R.L., DiPerna D.M., Sirianni R.W. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of Rabies Virus Glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics. 2020;12:93. doi: 10.3390/pharmaceutics12020093. PubMed DOI PMC

Piazzini V., Landucci E., D’Ambrosio M., Tiozzo Fasiolo L., Cinci L., Colombo G., Pellegrini-Giampietro D.E., Bilia A.R., Luceri C., Bergonzi M.C. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int. J. Biol. Macromol. 2019;129:267–280. doi: 10.1016/j.ijbiomac.2019.02.005. PubMed DOI

Yin T., Yang L., Liu Y., Zhou X., Sun J., Liu J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater. 2015;25:172–183. doi: 10.1016/j.actbio.2015.06.035. PubMed DOI

Barnabas W. Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods. 2019;311:133–146. doi: 10.1016/j.jneumeth.2018.10.015. PubMed DOI

Yu S., Xu X., Feng J., Liu M., Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int. J. Pharm. 2019;560:282–293. doi: 10.1016/j.ijpharm.2019.02.012. PubMed DOI

Zheng X., Zhang C., Guo Q., Wan X., Shao X., Liu Q., Zhang Q. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety. Int. J. Pharm. 2017;525:237–248. doi: 10.1016/j.ijpharm.2017.04.033. PubMed DOI

Teleanu D.M., Negut I., Grumezescu V., Grumezescu A.M., Teleanu R.I. Nanomaterials for drug delivery to the central nervous system. Nanomaterials. 2019;9:371. doi: 10.3390/nano9030371. PubMed DOI PMC

Song H., Wei M., Zhang N., Li H., Tan X., Zhang Y., Zheng W. Enhanced permeability of blood-brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle. Int. J. Nanomed. 2018;13:1869–1879. doi: 10.2147/IJN.S161237. PubMed DOI PMC

Hu X., Yang F., Liao Y., Li L., Zhang L. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: In vitro and in vivo evaluations. Drug Deliv. 2017;24:121–132. doi: 10.1080/10717544.2016.1233590. PubMed DOI PMC

Gajbhiye K.R., Pawar A., Mahadik K.R., Gajbhiye V. PEGylated nanocarriers: A promising tool for targeted delivery to the brain. Colloids Surf. B Biointerfaces. 2020;187:110770. doi: 10.1016/j.colsurfb.2019.110770. PubMed DOI

Azhari H., Strauss M., Hook S., Boyd B.J., Rizwan S.B. Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood-brain barrier. Eur. J. Pharm. Biopharm. 2016;104:148–155. doi: 10.1016/j.ejpb.2016.05.001. PubMed DOI

Gobbi M., Re F., Canovi M., Beeg M., Gregori M., Sesana S., Sonnino S., Brogioli D., Musicanti C., Gasco P., et al. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials. 2010;31:6519–6529. doi: 10.1016/j.biomaterials.2010.04.044. PubMed DOI

Zhang C., Wan X., Zheng X., Shao X., Liu Q., Zhang Q., Qian Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. 2014;35:456–465. doi: 10.1016/j.biomaterials.2013.09.063. PubMed DOI

Aderibigbe B.A., Naki T. Chitosan-based nanocarriers for nose to brain delivery. Appl. Sci. 2019;9:2219. doi: 10.3390/app9112219. DOI

Ramalho M.J., Andrade S., Loureiro J.A., do Carmo Pereira M. Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds. Drug Deliv. Transl. Res. 2020;10:380–402. doi: 10.1007/s13346-019-00694-3. PubMed DOI

Prabhath A., Vernekar V.N., Sanchez E., Laurencin C.T. Growth factor delivery strategies for rotator cuff repair and regeneration. Int. J. Pharm. 2018;544:358–371. doi: 10.1016/j.ijpharm.2018.01.006. PubMed DOI PMC

Bayer E.A., Gottardi R., Fedorchak M.V., Little S.R. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J. Control. Release. 2015;219:129–140. doi: 10.1016/j.jconrel.2015.08.004. PubMed DOI

Van Rijt S., Habibovic P. Enhancing regenerative approaches with nanoparticles. J. R. Soc. Interface. 2017;14:20170093. doi: 10.1098/rsif.2017.0093. PubMed DOI PMC

Prades R., Guerrero S., Araya E., Molina C., Salas E., Zurita E., Selva J., Egea G., López-Iglesias C., Teixidó M., et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33:7194–7205. doi: 10.1016/j.biomaterials.2012.06.063. PubMed DOI

Songjiang Z., Lixiang W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech. 2009;10:900–905. doi: 10.1208/s12249-009-9279-1. PubMed DOI PMC

Zhang C., Zheng X., Wan X., Shao X., Liu Q., Zhang Z., Zhang Q. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J. Control. Release. 2014;192:317–324. doi: 10.1016/j.jconrel.2014.07.050. PubMed DOI

Zensi A., Begley D., Pontikis C., Legros C., Mihoreanu L., Wagner S., Büchel C., von Briesen H., Kreuter J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release. 2009;137:78–86. doi: 10.1016/j.jconrel.2009.03.002. PubMed DOI

Angelov B., Angelova A., Filippov S.K., Drechsler M., Štěpánek P., Lesieur S. Multicompartment lipid cubic nanoparticles with high protein upload: Millisecond dynamics of formation. ACS Nano. 2014;8:5216–5226. doi: 10.1021/nn5012946. PubMed DOI

Gao X., Wu B., Zhang Q., Chen J., Zhu J., Zhang W., Rong Z., Chen H., Jiang X. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J. Control. Release. 2007;121:156–167. doi: 10.1016/j.jconrel.2007.05.026. PubMed DOI

Zhang C., Chen J., Feng C., Shao X., Liu Q., Zhang Q., Pang Z., Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int. J. Pharm. 2014;461:192–202. doi: 10.1016/j.ijpharm.2013.11.049. PubMed DOI

Park T.E., Singh B., Li H., Lee J.Y., Kang S.K., Choi Y.J., Cho C.S. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials. 2015;38:61–71. doi: 10.1016/j.biomaterials.2014.10.068. PubMed DOI

Liu Y., An S., Li J., Kuang Y., He X., Guo Y., Ma H., Zhang Y., Ji B., Jiang C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials. 2016;80:33–45. doi: 10.1016/j.biomaterials.2015.11.060. PubMed DOI

Arora S., Sharma D., Singh J. GLUT-1: An effective target to deliver brain-derived neurotrophic factor gene across the blood brain barrier. ACS Chem. Neurosci. 2020;11:1620–1633. doi: 10.1021/acschemneuro.0c00076. PubMed DOI

Gandhi M., Bhatt P., Chauhan G., Gupta S., Misra A., Mashru R. IGF-II-conjugated nanocarrier for brain-targeted delivery of p11 gene for depression. AAPS PharmSciTech. 2019;20:50. doi: 10.1208/s12249-018-1206-x. PubMed DOI

Wang P., Zheng X., Guo Q., Yang P., Pang X., Qian K., Lu W., Zhang Q., Jiang X. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J. Control. Release. 2018;279:220–233. doi: 10.1016/j.jconrel.2018.04.034. PubMed DOI

Sun X., Pang Z., Ye H., Qiu B., Guo L., Li J., Ren J., Qian Y., Zhang Q., Chen J. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials. 2012;33:916–924. doi: 10.1016/j.biomaterials.2011.10.035. PubMed DOI

Tarus D., Hamard L., Caraguel F., Wion D., Szarpak-Jankowska A., van der Sanden B., Auzély-Velty R. Design of hyaluronic acid hydrogels to promote neurite outgrowth in three dimensions. ACS Appl. Mater. Interfaces. 2016;8:25051–25059. doi: 10.1021/acsami.6b06446. PubMed DOI

Santos T., Boto C., Saraiva C.M., Bernardino L., Ferreira L. Nanomedicine approaches to modulate neural stem cells in brain repair. Trends Biotechnol. 2016;34:437–439. doi: 10.1016/j.tibtech.2016.02.003. PubMed DOI

Entekhabi E., Haghbin Nazarpak M., Moztarzadeh F., Sadeghi A. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;69:380–387. doi: 10.1016/j.msec.2016.06.078. PubMed DOI

Bae H., Chu H., Edalat F., Cha J.M., Sant S., Kashyap A., Ahari A.F., Kwon C.H., Nichol J.W., Manoucheri S., et al. Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. J. Tissue Eng. Regen. Med. 2014;8:1–14. doi: 10.1002/term.1494. PubMed DOI PMC

Kuihua Z., Chunyang W., Cunyi F., Xiumei M. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J. Biomed. Mater. Res. A. 2014;102:2680–2691. doi: 10.1002/jbm.a.34922. PubMed DOI

Pradhan J., Noakes P.G., Bellingham M.C. The role of altered BDNF/TrkB signaling in Amyotrophic Lateral Sclerosis. Front. Cell Neurosci. 2019;13:368. doi: 10.3389/fncel.2019.00368. PubMed DOI PMC

Rakotoarisoa M., Angelov B., Drechsler M., Nicolas V., Bizien T., Gorshkova Y.E., Deng Y., Angelova A. Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress. Smart Mater. Med. 2022;3:274–288. doi: 10.1016/j.smaim.2022.03.001. DOI

Guo W., Nagappan G., Lu B. Differential effects of transient and sustained activation of BDNF-TrkB signaling. Dev. Neurobiol. 2018;78:647–659. doi: 10.1002/dneu.22592. PubMed DOI

Minuzzi L.G., Seelaender M., Silva B.S.D.A., Cunha E.d.B.B., Deus M.D.C., Vasconcellos F.T.F., Marqueze L.F.B., Gadotti A.C., Baena C.P., Pereira T., et al. COVID-19 outcome relates with circulating BDNF, according to patient adiposity and age. Front. Nutr. 2021;8:784429. doi: 10.3389/fnut.2021.784429. PubMed DOI PMC

Motaghinejad M., Gholami M. Possible neurological and mental outcomes of COVID-19 infection: A hypothetical role of ACE-2\Mas\BDNF signaling pathway. Int. J. Prev. Med. 2020;11:84. doi: 10.4103/ijpvm.IJPVM_114_20. PubMed DOI PMC

Villa C., Rivellini E., Lavitrano M., Combi R. Can SARS-CoV-2 Infection exacerbate Alzheimer’s disease? An overview of shared risk factors and pathogenetic mechanisms. J. Pers. Med. 2021;12:29. doi: 10.3390/jpm12010029. PubMed DOI PMC

Ng T.K.S., Ho C.S.H., Tam W.W.S., Kua E.H., Ho R.C.M. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): A systematic review and meta-analysis. Int. J. Mol. Sci. 2019;20:257. doi: 10.3390/ijms20020257. PubMed DOI PMC

Harris N.M., Ritzel R., Mancini N.S., Jiang Y., Yi X., Manickam D.S., Banks W.A., Kabanov A.V., McCullough L.D., Verma R. Nano-particle delivery of brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery. Pharmacol. Biochem. Behav. 2016;150–151:48–56. doi: 10.1016/j.pbb.2016.09.003. PubMed DOI PMC

Jiang Y., Fay J.M., Poon C.D., Vinod N., Zhao Y., Bullock K., Qin S., Manickam D.S., Yi X., Banks W.A., et al. Nanoformulation of brain-derived neurotrophic factor with target receptor-triggered-release in the central nervous system. Adv. Funct. Mater. 2018;28:1703982. doi: 10.1002/adfm.201703982. PubMed DOI PMC

Limongi T., Rocchi A., Cesca F., Tan H., Miele E., Giugni A., Orlando M., Perrone Donnorso M., Perozziello G., Benfenati F., et al. Delivery of brain-derived neurotrophic factor by 3D biocompatible polymeric scaffolds for neural tissue engineering and neuronal regeneration. Mol. Neurobiol. 2018;55:8788–8798. doi: 10.1007/s12035-018-1022-z. PubMed DOI

Hassannejad Z., Zadegan S.A., Vaccaro A.R., Rahimi-Movaghar V., Sabzevari O. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. Injury. 2019;50:278–285. doi: 10.1016/j.injury.2018.12.027. PubMed DOI

Cook D.J., Nguyen C., Chun H.N.L., Llorente I., Chiu A.S., Machnicki M., Zarembinski T.I., Carmichael S.T. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow. Metab. 2017;37:1030–1045. doi: 10.1177/0271678X16649964. PubMed DOI PMC

Obermeyer J.M., Tuladhar A., Payne S.L., Ho E., Morshead C.M., Shoichet M.S. Local delivery of brain-derived neurotrophic factor enables behavioral recovery and tissue repair in stroke-injured rats. Tissue Eng. Part A. 2019;25:1175–1187. doi: 10.1089/ten.tea.2018.0215. PubMed DOI

Kandalam S., Sindji L., Delcroix G.J., Violet F., Garric X., André E.M., Schiller P.C., Venier-Julienne M.C., des Rieux A., Guicheux J., et al. Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater. 2017;49:167–180. doi: 10.1016/j.actbio.2016.11.030. PubMed DOI

Xing Y., Wen C.Y., Li S.T., Xia Z.X. Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier. Neural Regen. Res. 2016;11:617–622. doi: 10.4103/1673-5374.180747. PubMed DOI PMC

Low W.C., Rujitanaroj P.O., Wang F., Wang J., Chew S.Y. Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Deliv. Transl. Res. 2015;5:89–100. doi: 10.1007/s13346-013-0131-5. PubMed DOI

Schmidt N., Schulze J., Warwas D.P., Ehlert N., Lenarz T., Warnecke A., Behrens P. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS ONE. 2018;13:e0194778. doi: 10.1371/journal.pone.0194778. PubMed DOI PMC

Xu J., Chau Y. Polymeric nanoparticles decorated with BDNF-derived peptide for neuron-targeted delivery of PTEN inhibitor. Eur. J. Pharm. Sci. 2018;124:37–45. doi: 10.1016/j.ejps.2018.08.020. PubMed DOI

Dąbkowska M., Łuczkowska K., Rogińska D., Sobuś A., Wasilewska M., Ulańczyk Z., Machaliński B. Novel design of (PEG-ylated)PAMAM-based nanoparticles for sustained delivery of BDNF to neurotoxin-injured differentiated neuroblastoma cells. J. Nanobiotechnol. 2020;18:120. doi: 10.1186/s12951-020-00673-8. PubMed DOI PMC

Lu J., Yan X., Sun X., Shen X., Yin H., Wang C., Liu Y., Lu C., Fu H., Yang S., et al. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale. 2019;11:19943–19958. doi: 10.1039/C9NR04521J. PubMed DOI

Edelbrock A.N., Àlvarez Z., Simkin D., Fyrner T., Chin S.M., Sato K., Kiskinis E., Stupp S.I. Supramolecular nanostructure activates TrkB receptor signaling of neuronal cells by mimicking brain-derived neurotrophic factor. Nano Lett. 2018;18:6237–6247. doi: 10.1021/acs.nanolett.8b02317. PubMed DOI PMC

Lopes C.D.F., Gonçalves N.P., Gomes C.P., Saraiva M.J., Pêgo A.P. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials. 2017;121:83–96. doi: 10.1016/j.biomaterials.2016.12.025. PubMed DOI

Wang B., Yuan J., Chen X., Xu J., Li Y., Dong P. Functional regeneration of the transected recurrent laryngeal nerve using a collagen scaffold loaded with laminin and laminin-binding BDNF and GDNF. Sci. Rep. 2016;6:32292. doi: 10.1038/srep32292. PubMed DOI PMC

Ravina K., Briggs D.I., Kislal S., Warraich Z., Nguyen T., Lam R.K., Zarembinski T.I., Shamloo M. Intracerebral delivery of brain-derived neurotrophic factor using HyStem®-C hydrogel implants improves functional recovery and reduces neuroinflammation in a rat model of ischemic stroke. Int. J. Mol. Sci. 2018;19:3782. doi: 10.3390/ijms19123782. PubMed DOI PMC

Gransee H.M., Zhan W.Z., Sieck G.C., Mantilla C.B. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J. Neurotrauma. 2015;32:185–193. doi: 10.1089/neu.2014.3464. PubMed DOI PMC

Liu S., Sandner B., Schackel T., Nicholson L., Chtarto A., Tenenbaum L., Puttagunta R., Müller R., Weidner N., Blesch A. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomater. 2017;60:167–180. doi: 10.1016/j.actbio.2017.07.024. PubMed DOI

Schendzielorz P., Scherzed A., Rak K., Völker J., Hagen R., Mlynski R., Frölich K., Radeloff A. A hydrogel coating for cochlear implant arrays with encapsulated adipose-derived stem cells allows brain-derived neurotrophic factor delivery. Acta Otolaryngol. 2014;134:497–505. doi: 10.3109/00016489.2013.878809. PubMed DOI

Angelova A., Drechsler M., Garamus V.M., Angelov B. Liquid crystalline nanostructures as PEGylated reservoirs of omega-3 polyunsaturated fatty acids: Structural insights toward delivery formulations against neurodegenerative disorders. ACS Omega. 2018;3:3235–3247. doi: 10.1021/acsomega.7b01935. PubMed DOI PMC

Guerzoni L.P.B., Nicolas V., Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res. 2017;34:492–505. doi: 10.1007/s11095-016-2080-4. PubMed DOI

Fujino T., Yamada T., Asada T., Tsuboi Y., Wakana C., Mawatari S., Kono S. Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: A multicenter, randomized, double-blind, placebo-controlled trial. eBiomedicine. 2017;17:199–205. doi: 10.1016/j.ebiom.2017.02.012. PubMed DOI PMC

Deng Y., Angelova A. Coronavirus-induced host cubic membranes and lipid-related antiviral therapies: A focus on bioactive plasmalogens. Front. Cell Dev. Biol. 2021;9:630242. doi: 10.3389/fcell.2021.630242. PubMed DOI PMC

Hossain M.S., Mawatari S., Fujino T. Plasmalogens, the vinyl ether-linked glycerophospholipids, enhance learning and memory by regulating brain-derived neurotrophic factor. Front. Cell Dev. Biol. 2022;10:828282. doi: 10.3389/fcell.2022.828282. PubMed DOI PMC

Angelova A., Angelov B., Drechsler M., Bizien T., Gorshkova Y.E., Deng Y. Plasmalogen-based liquid crystalline multiphase structures involving docosapentaenoyl derivatives inspired by biological cubic membranes. Front. Cell Dev. Biol. 2021;9:617984. doi: 10.3389/fcell.2021.617984. PubMed DOI PMC

Park H., Oh J., Shim G., Cho B., Chang Y., Kim S., Baek S., Kim H., Shin J., Cho H., et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–528. doi: 10.1038/s41593-019-0352-0. PubMed DOI

Kolli N., Lu M., Maiti P., Rossignol J., Dunbar G.L. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases. Neurochem. Int. 2018;112:187–196. doi: 10.1016/j.neuint.2017.07.007. PubMed DOI

Guan L., Han Y., Yang C., Lu S., Du J., Li H., Lin J. CRISPR-Cas9-mediated gene therapy in neurological disorders. Mol. Neurobiol. 2022;59:968–982. doi: 10.1007/s12035-021-02638-w. PubMed DOI

Rozhin A., Batasheva S., Kruychkova M., Cherednichenko Y., Rozhina E., Fakhrullin R. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal Agents. Micromachines. 2021;12:1480. doi: 10.3390/mi12121480. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...