Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33644054
PubMed Central
PMC7905036
DOI
10.3389/fcell.2021.617984
Knihovny.cz E-zdroje
- Klíčová slova
- SAXS, cryo-TEM, docosapentaenoyl phospholipids, hexosomes, inverted hexagonal phase, lipid cubic phase, plasmalogen-loaded cubosomes,
- Publikační typ
- časopisecké články MeSH
Structural properties of plasmenyl-glycerophospholipids (plasmalogens) have been scarcely studied for plasmalogens with long polyunsaturated fatty acid (PUFA) chains, despite of their significance for the organization and functions of the cellular membranes. Elaboration of supramolecular assemblies involving PUFA-chain plasmalogens in nanostructured mixtures with lyotropic lipids may accelerate the development of nanomedicines for certain severe pathologies (e.g., peroxisomal disorders, cardiometabolic impairments, and neurodegenerative Alzheimer's and Parkinson's diseases). Here, we investigate the spontaneous self-assembly of bioinspired, custom-produced docosapentaenoyl (DPA) plasmenyl (ether) and ester phospholipids in aqueous environment (pH 7) by synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). A coexistence of a liquid crystalline primitive cubic Im3m phase and an inverted hexagonal (HII) phase is observed for the DPA-ethanolamine plasmalogen (C16:1p-22:5n6 PE) derivative. A double-diamond cubic Pn3m phase is formed in mixed assemblies of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) and monoolein (MO), whereas a coexistence of cubic and lamellar liquid crystalline phases is established for the DPA-plasmenyl phosphocholine (C16:1p-22:5n6 PC)/MO mixture at ambient temperature. The DPA-diacyl phosphoinositol (22:5n6-22:5n6 PI) ester lipid displays a propensity for a lamellar phase formation. Double membrane vesicles and multilamellar onion topologies with inhomogeneous distribution of interfacial curvature are formed upon incorporation of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) into dioleoylphosphocholine (DOPC) bilayers. Nanoparticulate formulations of plasmalogen-loaded cubosomes, hexosomes, and various multiphase cubosome- and hexosome-derived architectures and mixed type nano-objects (e.g., oil droplet-embedding vesicles or core-shell particles with soft corona) are produced with PUFA-chain phospholipids and lipophilic antioxidant-containing membrane compositions that are characterized by synchrotron SAXS and cryo-TEM imaging. The obtained multiphase nanostructures reflect the changes in the membrane curvature induced by the inclusion of DPA-based PE and PC plasmalogens, as well as DPA-PI ester derivative, and open new opportunities for exploration of these bioinspired nanoassemblies.
Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna Russia
Institut Galien Paris Saclay UMR8612 Université Paris Saclay CNRS Châtenay Malabry France
Institute of Physics ELI Beamlines Academy of Sciences of the Czech Republic Prague Czech
Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin France
Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
Zobrazit více v PubMed
Almsherqi Z. A., Margadant F., Deng Y. (2010). The cubic “Faces” of biomembranes. Adv. Plan. Lipid Bilay. Liposom. 12 79–99. 10.1016/b978-0-12-381266-7.00004-3 PubMed DOI PMC
Anderson V. C., Thompson D. H. (1992). Triggered release of hydrophilic agents from plasmalogen liposomes using visible light or acid. Biochim. Biophys. Acta 1109 33–42. 10.1016/0005-2736(92)90183-m PubMed DOI
Angelov B., Angelova A. (2017). Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. Nanoscale 9 9797–9804. 10.1039/c7nr03454g PubMed DOI
Angelov B., Angelova A., Filippov S., Drechsler M., Štěpánek P., Lesieur S. (2014). Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano 8 5216–5226. 10.1021/nn5012946 PubMed DOI
Angelov B., Garamus V. M., Drechsler M., Angelova A. (2017). Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. J. Mol. Liq. 235 83–89. 10.1016/j.molliq.2016.11.064 DOI
Angelova A., Angelov B. (2017). Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen. Res. 12 886–889. 10.4103/1673-5374.208546 PubMed DOI PMC
Angelova A., Angelov B., Mutafchieva R., Lesieur S., Couvreur P. (2011). Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc. Chem. Res. 44 147–156. 10.1021/ar100120v PubMed DOI
Angelova A., Drechsler M., Garamus V. M., Angelov B. (2018). Liquid crystalline nanostructures as PEGylated reservoirs of omega-3 polyunsaturated fatty acids: structural insights toward delivery formulations against neurodegenerative disorders. ACS Omega 3 3235–3247. 10.1021/acsomega.7b01935 PubMed DOI PMC
Angelova A., Angelov B., Garamus V. M., Drechsler M. (2019a). A vesicle-to-sponge transition via the proliferation of membrane-linking pores in omega-3 polyunsaturated fatty acid-containing lipid assemblies. J. Mol. Liq. 279 518–523. 10.1016/j.molliq.2019.01.124 DOI
Angelova A., Drechsler M., Garamus V. M., Angelov B. (2019b). Pep-lipid cubosomes and vesicles compartmentalized by micelles from self-assembly of multiple neuroprotective building blocks including a large peptide hormone PACAP-DHA. Chem. Nano Mat. 5 1381–1389. 10.1002/cnma.201900468 DOI
Azmi I. D., Moghimi S. M., Yaghmur A. (2015). Cubosomes and hexosomes as versatile platforms for drug delivery. Ther. Deliv. 6 1347–1364. 10.4155/tde.15.81 PubMed DOI
Batenburg J. J., Haagsman H. P. (1998). The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog. Lipid Res. 37 235–276. 10.1016/s0163-7827(98)00011-3 PubMed DOI
Bharadwaj P., Solomon T., Malajczuk C. J., Mancera R. L., Howard M., Arrigan D. W. M., et al. (2018). Role of the cell membrane interface in modulating production and uptake of Alzheimer’s beta amyloid protein. Biochim. Biophys. Acta Biomemb. 1860 1639–1651. 10.1016/j.bbamem.2018.03.015 PubMed DOI
Bogdanov M., Umeda M., Dowhan W. (1999). Phospholipid-assisted refolding of an integral membrane protein: minimum structural features for phosphatidylethanolamine to act as a molecular chaperone. J. Biol. Chem. 274 12339–12345. 10.1074/jbc.274.18.12339 PubMed DOI
Boggs J. M., Stamp D., Hughes D. W., Deber C. M. (1981). Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids. Biochemistry 20 5728–5735. 10.1021/bi00523a015 PubMed DOI
Braverman N., Moser A. (2012). Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 1822 1442–1452. 10.1016/j.bbadis.2012.05.008 PubMed DOI
Brites P., Waterham H. R., Wanders R. J. A. (2004). Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta 1636 219–231. 10.1016/j.bbalip.2003.12.010 PubMed DOI
Brodde A., Teigler A., Brugger B., Lehmann W. D., Wieland F., Berger J., et al. (2012). Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum. Mol. Genet. 21 2713–2724. 10.1093/hmg/dds097 PubMed DOI PMC
Brosche T., Bertsch T., Sieber C. C., Hoffmann U. (2013). Reduced plasmalogen concentration as a surrogate marker of oxidative stress in elderly septic patients. Archiv. Gerontol. Geriatr. 57 66–69. 10.1016/j.archger.2013.02.007 PubMed DOI
Casares D., Escribá P. V., Rosselló C. A. (2019). Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20:2167. 10.3390/ijms20092167 PubMed DOI PMC
Che H., Li Q., Zhang L., Ding L., Zhang L., Shi H., et al. (2018). A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Abeta 42 induced cognitive deficiency in a rat model. Food Funct. 9 3008–3017. 10.1039/c8fo00643a PubMed DOI
Che H., Zhang L., Ding L., Xie W., Jiang X., Xue C., et al. (2020). EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. Food Funct. 11 1729–1739. 10.1039/c9fo02323b PubMed DOI
Chong K., Deng Y. (2012). The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy. Methods Cell Biol. 108 317–343. 10.1016/b978-0-12-386487-1.00015-8 PubMed DOI
Creuwels L. A. J. M., Van Golde L. M. G., Haagsman H. P. (1997). The pulmonary surfactant system: biochemical and clinical aspects. Lung 175 1–39. 10.1201/9780367812812-1 PubMed DOI PMC
Cui H., Hodgdon T. K., Kaler E. W., Abezgauz L., Danino D., Lubovsky M., et al. (2007). Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter. 3 945–955. 10.1039/b704194b PubMed DOI
Cullis P. R., de Kruijff B. (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559 399–420. 10.1016/0304-4157(79)90012-1 PubMed DOI
David G., Pérez J. (2009). Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the synchrotron SOLEIL SWING beamline. J. Appl. Crystallogr. 42 892–900. 10.1107/s0021889809029288 DOI
Dean J. M., Lodhi I. J. (2018). Structural and functional roles of ether lipids. Protein Cell 9 196–206. 10.1007/s13238-017-0423-5 PubMed DOI PMC
Deng Y., Almsherqi Z. A. (2015). Evolution of cubic membranes as antioxidant defence system. Interf. Focus 5:20150012. 10.1098/rsfs.2015.0012 PubMed DOI PMC
Deng Y., Almsherqi Z. A., Shui G. H., Wenk M. R., Kohlwein S. D. (2009). Docosapentaenoic acid (DPA). is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria. FASEB J. 23 2866–2871. 10.1096/fj.09-130435 PubMed DOI
Deng Y., Lee L. H. E., Chong K., Almsherqi Z. A. (2017). Evaluation of radical scavenging system in amoeba Chaos carolinense during nutrient deprivation. Interf. Focus 7:20160113. 10.1098/rsfs.2016.0113 PubMed DOI PMC
Dorninger F., Gundacker A., Zeitler G., Pollak D. D., Berger J. (2019). Ether lipid deficiency in mice produces complex behavioral phenotype mimicking aspects of human psychiatric disorders. Int. J. Mol. Sci. 20:3929. 10.3390/ijms20163929 PubMed DOI PMC
Dorninger F., Forss-Petter S., Berger J. (2017a). From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett. 591 2761–2788. 10.1002/1873-3468.12788 PubMed DOI PMC
Dorninger F., Herbst R., Kravic B., Camurdanoglu B. Z., Macinkovic I., Zeitler G., et al. (2017b). Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction. J. Neurochem. 143 569–583. 10.1111/jnc.14082 PubMed DOI PMC
Dragonas C., Bertsch T., Sieber C. C., Brosche T. (2009). Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson’s disease. Clin. Chem. Lab. Med. 47 894–897. PubMed
Farooqui A. A., Rapoport S. I., Horrocks L. A. (1997). Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem. Res. 22 523–527. PubMed
Feller S. E., Gawrisch K., MacKerell A. D. (2002). Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc. 124 318–326. 10.1021/ja0118340 PubMed DOI
Fong C., Weerawardena A., Sagnella S. M., Mulet X., Waddington L., Krodkiewska I., et al. (2010). Monodisperse nonionic phytanyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination and the formation of liposomes, hexosomes and cubosomes. Soft Matter. 6 4727–4741. 10.1039/c0sm00454e DOI
Fong W. K., Salentinig S., Prestidge C. A., Mezzenga R., Hawley A., Boyd B. J. (2014). Generation of geometrically ordered lipid-based liquid-crystalline nanoparticles using biologically relevant enzymatic processing. Langmuir 30 5373–5377. 10.1021/la5003447 PubMed DOI
Fong W. K., Sánchez-Ferrer A., Rappolt M., Boyd B. J., Mezzenga R. (2019). Structural transformation in vesicles upon hydrolysis of phosphatidylethanolamine and phosphatidylcholine with phospholipase C. Langmuir 35 14949–14958. 10.1021/acs.langmuir.9b02288 PubMed DOI
Fonseca-Santos B., Gremião M. P. D., Chorilli M. (2015). Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomed. 10 4981–5003. 10.2147/ijn.s87148 PubMed DOI PMC
Fontaine D., Figiel S., Felix R., Kouba S., Fromont G., Maheo K., et al. (2020). Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J. Lipid Res. 61 840–858. 10.1194/jlr.ra120000634 PubMed DOI PMC
Fujino T., Yamada T., Asada T., Ichimaru M., Tsuboi Y., Wakana C., et al. (2018). Effects of plasmalogen on patients with mild cognitive impairment: a randomized, placebo-controlled trial in Japan. J. Alzheimers Dis. Parkins. 8:419.
Fujino T., Yamada T., Asada T., Tsuboi Y., Wakana C., Mawatari S., et al. (2017). Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. EBiomedicine 17 199–205. 10.1016/j.ebiom.2017.02.012 PubMed DOI PMC
Glaser P. E., Gross R. W. (1994). Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 33 5805–5812. 10.1021/bi00185a019 PubMed DOI
Goldfine H. (2010). The appearance, disappearance and reappearance of plasmalogens in evolution. Prog. Lipid Res. 49 493–498. 10.1016/j.plipres.2010.07.003 PubMed DOI
Goldfine H., Johnston N. C., Mattai J., Shipley G. G. (1987a). Regulation of bilayer stability in Clostridium hufyricurn: studies on the polymorphic phase behavior of ether lipids. Biochemistry 26 2814–2822. 10.1021/bi00384a024 PubMed DOI
Goldfine H., Rosenthal J. J. C., Johnston N. C. (1987b). Lipid shape as a determinant of lipid composition in Clostridium hutyricum: effects of incorporation of various fatty acids on the ratios of the major ether lipids. Biochim. Biophys. Acta 904 283–289. 10.1016/0005-2736(87)90377-4 PubMed DOI
Goldfine H., Johnston N. C., Phillips M. C. (1981). Phase behavior of ether lipids from Clostridium butyricum. Biochemistry 20 2908–2916. 10.1021/bi00513a030 PubMed DOI
Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry 24 1662–1668. 10.1021/bi00328a014 PubMed DOI
Guerzoni L. P. B., Nicolas V., Angelova A. (2017). In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res. 34 492–505. 10.1007/s11095-016-2080-4 PubMed DOI
Han X., Gross R. W. (1990). Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. Biochemistry 29 4992–4996. 10.1021/bi00472a032 PubMed DOI
Han X., Holtzman D. M., McKeel D. W., Jr. (2001). Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models. J. Neurochem. 77 1168–1180. 10.1046/j.1471-4159.2001.00332.x PubMed DOI
Harilal S., Jose J., Parambi D. G. T., Kumar R., Mathew G. E., Uddin M. S., et al. (2019). Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol. 71 1370–1383. 10.1111/jphp.13132 PubMed DOI
Hossain M. S., Ifuku M., Take S., Kawamura J., Miake K., Katafuchi T. (2013). Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS One 8:e83508. 10.1371/journal.pone.0083508 PubMed DOI PMC
Israelachvili J. N., Mitchell D. J., Ninham B. W. J. (1976). Theory of self - assembly of hydrocarbon amphiphiles into micelles and bilayers. Chem. Soc. Faraday Trans. II 72 1525–1568. 10.1039/f29767201525 DOI
Jang J. E., Park H.-S., Yoo H. J., Koh E. H., Lee K. U. (2017). Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice. Hepatology 66 416–431. 10.1002/hep.29039 PubMed DOI PMC
Jenkins C. M., Yang K., Liu G., Moon S. H., Dilthey B. G., Gross R. W. (2018). Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. J. Biol. Chem. 293 8693–8709. 10.1074/jbc.ra117.001629 PubMed DOI PMC
Jiménez-Rojo N., Riezman H. (2019). On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 593 2378–2389. 10.1002/1873-3468.13465 PubMed DOI
Koivuniemi A. (2017). The biophysical properties of plasmalogens originating from their unique molecular architecture. FEBS Lett. 591 2700–2713. 10.1002/1873-3468.12754 PubMed DOI
Lee A. G. (2004). How lipids affect the activities of integral membrane proteins. Biochim.Biophys. Acta 1666 62–87. 10.1016/j.bbamem.2004.05.012 PubMed DOI
Leßig J., Fuchs B. (2009). Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 16 2021–2041. 10.2174/092986709788682164 PubMed DOI
Li Y., Angelova A., Hu F., Garamus V. M., Peng C., Li N., et al. (2019). pH-Responsiveness of hexosomes and cubosomes for combined delivery of Brucea javanica oil and doxorubicin. Langmuir 35 14532–14542. 10.1021/acs.langmuir.9b02257 PubMed DOI
Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem. Phys. Lipids 81 167–184. 10.1016/0009-3084(96)02580-7 PubMed DOI
Lohner K., Balgavy P., Hermetter A., Paltauf F., Laggner P. (1991). Stabilization of non-bilayer structures by the ether lipid ethanolamine plasmalogen. Biochim. Biophys. Acta Biomembr. 1061 132–140. 10.1016/0005-2736(91)90277-f PubMed DOI
Lohner K., Hermitter A., Paltauf F. (1984). Phase behavior of ethanolamine plasmalogen. Chem. Phys. Lipids 34 163–170. 10.1016/0009-3084(84)90041-0 DOI
Malthaner M., Hermetter A., Paltauf F., Seelig J. (1987). Structure and dynamics of plasmalogen model membranes containing cholesterol: a deuterium NMR study. Biochim. Biophys. Acta 900 191–197. 10.1016/0005-2736(87)90333-6 PubMed DOI
Mannock D. A., Lewis R. N. A. H., McMullen T. P. W., McElhaney R. N. (2010). The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes. Chem. Phys. Lipids 163 403–448. 10.1016/j.chemphyslip.2010.03.011 PubMed DOI
Mariani P., Luzzati V., Delacroix H. (1988). Cubic phases of lipid - containing systems. Structure analysis and biological implications. J. Mol. Biol. 204 165–189. 10.1016/0022-2836(88)90607-9 PubMed DOI
Mawatari S., Ohara S., Taniwaki Y., Tsuboi Y., Maruyama T., Fujino T. (2020). Improvement of blood plasmalogens and clinical symptoms in Parkinson’s disease by oral administration of ether phospholipids: A preliminary report. Parkinson’s Dis. 2020:2671070. PubMed PMC
Messias M. C. F., Mecatti G. C., Priolli D. G., De Oliveira Carvalho P. (2018). Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. Lipids Health Dis. 17:41 10.1016/0009-3084(90)90147-j PubMed DOI PMC
Muallem S., Chung W. Y., Jha A., Ahuja M. (2017). Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep. 18 1893–1904. 10.15252/embr.201744331 PubMed DOI PMC
Munn N. J., Arnio E., Liu D., Zoeller R. A., Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. J. Lipid Res. 44 182–192. 10.1194/jlr.m200363-jlr200 PubMed DOI
Paul S., Lancaster G. I., Meikle P. J. (2019). Plasmalogens: a potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 74 186–195. 10.1016/j.plipres.2019.04.003 PubMed DOI
Pohl E. E., Jovanovic O. (2019). The role of phosphatidylethanolamine adducts in modification of the activity of membrane proteins under oxidative stress. Molecules 24:4545. 10.3390/molecules24244545 PubMed DOI PMC
Rakotoarisoa M., Angelov B., Espinoza S., Khakurel K., Bizien T., Angelova A. (2019). Cubic liquid crystalline nanostructures involving catalase and curcumin: BioSAXS study and catalase peroxidatic function after cubosomal nanoparticle treatment of differentiated SH-SY5Y cells. Molecules 24:E3058. PubMed PMC
Reiss D., Beyer K., Engelmann B. (1997). Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 323 807–814. 10.1042/bj3230807 PubMed DOI PMC
Rog T., Koivuniemi A. (2016). The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1858 97–103. 10.1016/j.bbamem.2015.10.023 PubMed DOI PMC
Saab S., Mazzocco J., Creuzot-Garcher C. P., Bron A. M., Bretillon L., Acar N., et al. (2014). Plasmalogens in the retina: from occurrence in retinal cell membranes to potential involvement in pathophysiology of retinal diseases. Biochimie 107(Pt A) 58–65. 10.1016/j.biochi.2014.07.023 PubMed DOI
Seddon J. M. (1990). Structure of the inverted hexagonal (HII). phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta Biomembr. 1031 1–69. 10.1016/0304-4157(90)90002-t PubMed DOI
Seddon J. M., Templer R. H. (1995). “Polymorphism of lipid-water systems,” in Handbook of Biological Physics: Structure and Dynamics of Membranes, eds Lipowsky R., Sackmann E. (London: Elsevier Science; ), 97–153. 10.1016/s1383-8121(06)80020-5 DOI
Shaharabani R., Ram-On M., Avinery R., Aharoni R., Arnon R., Talmon Y., et al. (2016). Structural transition in myelin membrane as initiator of multiple sclerosis. J. Am. Chem. Soc. 138 12159–12165. 10.1021/jacs.6b04826 PubMed DOI
Shao X., Bor G., Al-Hosayni S., Salentinig S., Yaghmur A. (2018). Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. Phys. Chem. Chem. Phys. 20 23928–23941. 10.1039/c8cp04256j PubMed DOI
Sibomana I., Grobe N., Delraso N. J., Reo N. V. (2019). Influence of myo-inositol plus ethanolamine on plasmalogens and cell viability during oxidative stress. Chem. Res. Toxicol. 32 265–284. 10.1021/acs.chemrestox.8b00280 PubMed DOI
Snyder F. (1999). The ether lipid trail: a historical perspective. Biochim. Biophys. Acta 1436 265–278. PubMed
Su X. Q., Wang J., Sinclair A. J. (2019). Plasmalogens and Alzheimer’s disease: a review. Lipids Health Dis. 18:100. PubMed PMC
Sutter I., Klingenberg R., Othman A., Rohrer L., Landmesser U., Heg D., et al. (2016). Decreased phosphatidylcholine plasmalogens - A putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. Atherosclerosis 246 130–140. 10.1016/j.atherosclerosis.2016.01.003 PubMed DOI
Sutter I., Velagapudi S., Othman A., Riwanto M., Manz J., Rohrer L., et al. (2015). Plasmalogens of high-density lipoproteins (HDL). are associated with coronary artery disease and anti-apoptotic activity of HDL. Atherosclerosis 241 539–546. 10.1016/j.atherosclerosis.2015.05.037 PubMed DOI
Talaikis M., Valldeperas M., Matulaitiene I., Borzova J. L., Barauskas J., Niaura G., et al. (2019). On the molecular interactions in lipid bilayer-water assemblies of different curvatures. J. Phys. Chem. B 123 2662–2672. 10.1021/acs.jpcb.8b11387 PubMed DOI
Thai T.-P., Rodemer C., Jauch A., Hunziker A., Moser A., Gorgas K., et al. (2001). Impaired membrane traffic in defective ether lipid biosynthesis. Hum. Mol. Genet. 10 127–136. 10.1093/hmg/10.2.127 PubMed DOI
Thompson D. H., Gerasimov O. V., Wheeler J. J., Rui Y., Anderson V. C. (1996). Triggerable plasmalogen liposomes: improvement of system efficiency. Biochim. Biophys. Acta 1279 25–34. 10.1016/0005-2736(95)00210-3 PubMed DOI
Wallner S., Schmitz G. (2011). Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 164 573–589. 10.1016/j.chemphyslip.2011.06.008 PubMed DOI
Wang W., Zetterlund P. B., Boyer C., Boyd B. J., Atherton T. J., Spicer P. T. (2018). Large hexosomes from emulsion droplets: Particle shape and mesostructure control. Langmuir 34 13662–13671. 10.1021/acs.langmuir.8b02638 PubMed DOI
West A., Zoni V., Teague W. E., Jr., Leonard A. N., Vanni S., Gawrisch K., et al. (2020). How do ethanolamine plasmalogens contribute to order and structure of neurological membranes? J. Phys. Chem. B 124 828–839. 10.1021/acs.jpcb.9b08850 PubMed DOI PMC
Yaghmur A., Glatter O. (2009). Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interf. Sci. 147-148 333–342. 10.1016/j.cis.2008.07.007 PubMed DOI
Yamashita S., Kanno S., Nakagawa K., Kinoshita M., Miyazawa T. (2015). Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: importance of plasmalogen molecular species. RSC Adv. 5 61012–61020. 10.1039/c5ra00632e DOI
Zhai J., Fong C., Tran N., Drummond C. J. (2019). Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 13 6178–6206. 10.1021/acsnano.8b07961 PubMed DOI
Zoeller R., Lake A., Nagan N., Gaposchkin D., Legner M., Lieberthal W. (1999). Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem. J. 338 769–776. 10.1042/0264-6021:3380769 PubMed DOI PMC
Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies