Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33644054
PubMed Central
PMC7905036
DOI
10.3389/fcell.2021.617984
Knihovny.cz E-zdroje
- Klíčová slova
- SAXS, cryo-TEM, docosapentaenoyl phospholipids, hexosomes, inverted hexagonal phase, lipid cubic phase, plasmalogen-loaded cubosomes,
- Publikační typ
- časopisecké články MeSH
Structural properties of plasmenyl-glycerophospholipids (plasmalogens) have been scarcely studied for plasmalogens with long polyunsaturated fatty acid (PUFA) chains, despite of their significance for the organization and functions of the cellular membranes. Elaboration of supramolecular assemblies involving PUFA-chain plasmalogens in nanostructured mixtures with lyotropic lipids may accelerate the development of nanomedicines for certain severe pathologies (e.g., peroxisomal disorders, cardiometabolic impairments, and neurodegenerative Alzheimer's and Parkinson's diseases). Here, we investigate the spontaneous self-assembly of bioinspired, custom-produced docosapentaenoyl (DPA) plasmenyl (ether) and ester phospholipids in aqueous environment (pH 7) by synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). A coexistence of a liquid crystalline primitive cubic Im3m phase and an inverted hexagonal (HII) phase is observed for the DPA-ethanolamine plasmalogen (C16:1p-22:5n6 PE) derivative. A double-diamond cubic Pn3m phase is formed in mixed assemblies of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) and monoolein (MO), whereas a coexistence of cubic and lamellar liquid crystalline phases is established for the DPA-plasmenyl phosphocholine (C16:1p-22:5n6 PC)/MO mixture at ambient temperature. The DPA-diacyl phosphoinositol (22:5n6-22:5n6 PI) ester lipid displays a propensity for a lamellar phase formation. Double membrane vesicles and multilamellar onion topologies with inhomogeneous distribution of interfacial curvature are formed upon incorporation of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) into dioleoylphosphocholine (DOPC) bilayers. Nanoparticulate formulations of plasmalogen-loaded cubosomes, hexosomes, and various multiphase cubosome- and hexosome-derived architectures and mixed type nano-objects (e.g., oil droplet-embedding vesicles or core-shell particles with soft corona) are produced with PUFA-chain phospholipids and lipophilic antioxidant-containing membrane compositions that are characterized by synchrotron SAXS and cryo-TEM imaging. The obtained multiphase nanostructures reflect the changes in the membrane curvature induced by the inclusion of DPA-based PE and PC plasmalogens, as well as DPA-PI ester derivative, and open new opportunities for exploration of these bioinspired nanoassemblies.
Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna Russia
Institut Galien Paris Saclay UMR8612 Université Paris Saclay CNRS Châtenay Malabry France
Institute of Physics ELI Beamlines Academy of Sciences of the Czech Republic Prague Czech
Synchrotron SOLEIL L'Orme des Merisiers Saint Aubin France
Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
Zobrazit více v PubMed
Almsherqi Z. A., Margadant F., Deng Y. (2010). The cubic “Faces” of biomembranes. PubMed DOI PMC
Anderson V. C., Thompson D. H. (1992). Triggered release of hydrophilic agents from plasmalogen liposomes using visible light or acid. PubMed DOI
Angelov B., Angelova A. (2017). Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. PubMed DOI
Angelov B., Angelova A., Filippov S., Drechsler M., Štěpánek P., Lesieur S. (2014). Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. PubMed DOI
Angelov B., Garamus V. M., Drechsler M., Angelova A. (2017). Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. DOI
Angelova A., Angelov B. (2017). Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. PubMed DOI PMC
Angelova A., Angelov B., Mutafchieva R., Lesieur S., Couvreur P. (2011). Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. PubMed DOI
Angelova A., Drechsler M., Garamus V. M., Angelov B. (2018). Liquid crystalline nanostructures as PEGylated reservoirs of omega-3 polyunsaturated fatty acids: structural insights toward delivery formulations against neurodegenerative disorders. PubMed DOI PMC
Angelova A., Angelov B., Garamus V. M., Drechsler M. (2019a). A vesicle-to-sponge transition via the proliferation of membrane-linking pores in omega-3 polyunsaturated fatty acid-containing lipid assemblies. DOI
Angelova A., Drechsler M., Garamus V. M., Angelov B. (2019b). Pep-lipid cubosomes and vesicles compartmentalized by micelles from self-assembly of multiple neuroprotective building blocks including a large peptide hormone PACAP-DHA. DOI
Azmi I. D., Moghimi S. M., Yaghmur A. (2015). Cubosomes and hexosomes as versatile platforms for drug delivery. PubMed DOI
Batenburg J. J., Haagsman H. P. (1998). The lipids of pulmonary surfactant: dynamics and interactions with proteins. PubMed DOI
Bharadwaj P., Solomon T., Malajczuk C. J., Mancera R. L., Howard M., Arrigan D. W. M., et al. (2018). Role of the cell membrane interface in modulating production and uptake of Alzheimer’s beta amyloid protein. PubMed DOI
Bogdanov M., Umeda M., Dowhan W. (1999). Phospholipid-assisted refolding of an integral membrane protein: minimum structural features for phosphatidylethanolamine to act as a molecular chaperone. PubMed DOI
Boggs J. M., Stamp D., Hughes D. W., Deber C. M. (1981). Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids. PubMed DOI
Braverman N., Moser A. (2012). Functions of plasmalogen lipids in health and disease. PubMed DOI
Brites P., Waterham H. R., Wanders R. J. A. (2004). Functions and biosynthesis of plasmalogens in health and disease. PubMed DOI
Brodde A., Teigler A., Brugger B., Lehmann W. D., Wieland F., Berger J., et al. (2012). Impaired neurotransmission in ether lipid-deficient nerve terminals. PubMed DOI PMC
Brosche T., Bertsch T., Sieber C. C., Hoffmann U. (2013). Reduced plasmalogen concentration as a surrogate marker of oxidative stress in elderly septic patients. PubMed DOI
Casares D., Escribá P. V., Rosselló C. A. (2019). Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. PubMed DOI PMC
Che H., Li Q., Zhang L., Ding L., Zhang L., Shi H., et al. (2018). A comparative study of EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine on Abeta 42 induced cognitive deficiency in a rat model. PubMed DOI
Che H., Zhang L., Ding L., Xie W., Jiang X., Xue C., et al. (2020). EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. PubMed DOI
Chong K., Deng Y. (2012). The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy. PubMed DOI
Creuwels L. A. J. M., Van Golde L. M. G., Haagsman H. P. (1997). The pulmonary surfactant system: biochemical and clinical aspects. PubMed DOI PMC
Cui H., Hodgdon T. K., Kaler E. W., Abezgauz L., Danino D., Lubovsky M., et al. (2007). Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. PubMed DOI
Cullis P. R., de Kruijff B. (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. PubMed DOI
David G., Pérez J. (2009). Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the synchrotron SOLEIL SWING beamline. DOI
Dean J. M., Lodhi I. J. (2018). Structural and functional roles of ether lipids. PubMed DOI PMC
Deng Y., Almsherqi Z. A. (2015). Evolution of cubic membranes as antioxidant defence system. PubMed DOI PMC
Deng Y., Almsherqi Z. A., Shui G. H., Wenk M. R., Kohlwein S. D. (2009). Docosapentaenoic acid (DPA). is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria. PubMed DOI
Deng Y., Lee L. H. E., Chong K., Almsherqi Z. A. (2017). Evaluation of radical scavenging system in amoeba Chaos carolinense during nutrient deprivation. PubMed DOI PMC
Dorninger F., Gundacker A., Zeitler G., Pollak D. D., Berger J. (2019). Ether lipid deficiency in mice produces complex behavioral phenotype mimicking aspects of human psychiatric disorders. PubMed DOI PMC
Dorninger F., Forss-Petter S., Berger J. (2017a). From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. PubMed DOI PMC
Dorninger F., Herbst R., Kravic B., Camurdanoglu B. Z., Macinkovic I., Zeitler G., et al. (2017b). Reduced muscle strength in ether lipid-deficient mice is accompanied by altered development and function of the neuromuscular junction. PubMed DOI PMC
Dragonas C., Bertsch T., Sieber C. C., Brosche T. (2009). Plasmalogens as a marker of elevated systemic oxidative stress in Parkinson’s disease. PubMed
Farooqui A. A., Rapoport S. I., Horrocks L. A. (1997). Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. PubMed
Feller S. E., Gawrisch K., MacKerell A. D. (2002). Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. PubMed DOI
Fong C., Weerawardena A., Sagnella S. M., Mulet X., Waddington L., Krodkiewska I., et al. (2010). Monodisperse nonionic phytanyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination and the formation of liposomes, hexosomes and cubosomes. DOI
Fong W. K., Salentinig S., Prestidge C. A., Mezzenga R., Hawley A., Boyd B. J. (2014). Generation of geometrically ordered lipid-based liquid-crystalline nanoparticles using biologically relevant enzymatic processing. PubMed DOI
Fong W. K., Sánchez-Ferrer A., Rappolt M., Boyd B. J., Mezzenga R. (2019). Structural transformation in vesicles upon hydrolysis of phosphatidylethanolamine and phosphatidylcholine with phospholipase C. PubMed DOI
Fonseca-Santos B., Gremião M. P. D., Chorilli M. (2015). Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. PubMed DOI PMC
Fontaine D., Figiel S., Felix R., Kouba S., Fromont G., Maheo K., et al. (2020). Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. PubMed DOI PMC
Fujino T., Yamada T., Asada T., Ichimaru M., Tsuboi Y., Wakana C., et al. (2018). Effects of plasmalogen on patients with mild cognitive impairment: a randomized, placebo-controlled trial in Japan.
Fujino T., Yamada T., Asada T., Tsuboi Y., Wakana C., Mawatari S., et al. (2017). Efficacy and blood plasmalogen changes by oral administration of plasmalogen in patients with mild Alzheimer’s disease and mild cognitive impairment: a multicenter, randomized, double-blind, placebo-controlled trial. PubMed DOI PMC
Glaser P. E., Gross R. W. (1994). Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. PubMed DOI
Goldfine H. (2010). The appearance, disappearance and reappearance of plasmalogens in evolution. PubMed DOI
Goldfine H., Johnston N. C., Mattai J., Shipley G. G. (1987a). Regulation of bilayer stability in PubMed DOI
Goldfine H., Rosenthal J. J. C., Johnston N. C. (1987b). Lipid shape as a determinant of lipid composition in PubMed DOI
Goldfine H., Johnston N. C., Phillips M. C. (1981). Phase behavior of ether lipids from PubMed DOI
Gross R. W. (1985). Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. PubMed DOI
Guerzoni L. P. B., Nicolas V., Angelova A. (2017). PubMed DOI
Han X., Gross R. W. (1990). Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs. PubMed DOI
Han X., Holtzman D. M., McKeel D. W., Jr. (2001). Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models. PubMed DOI
Harilal S., Jose J., Parambi D. G. T., Kumar R., Mathew G. E., Uddin M. S., et al. (2019). Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. PubMed DOI
Hossain M. S., Ifuku M., Take S., Kawamura J., Miake K., Katafuchi T. (2013). Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PubMed DOI PMC
Israelachvili J. N., Mitchell D. J., Ninham B. W. J. (1976). Theory of self - assembly of hydrocarbon amphiphiles into micelles and bilayers. DOI
Jang J. E., Park H.-S., Yoo H. J., Koh E. H., Lee K. U. (2017). Protective role of endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice. PubMed DOI PMC
Jenkins C. M., Yang K., Liu G., Moon S. H., Dilthey B. G., Gross R. W. (2018). Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. PubMed DOI PMC
Jiménez-Rojo N., Riezman H. (2019). On the road to unraveling the molecular functions of ether lipids. PubMed DOI
Koivuniemi A. (2017). The biophysical properties of plasmalogens originating from their unique molecular architecture. PubMed DOI
Lee A. G. (2004). How lipids affect the activities of integral membrane proteins. PubMed DOI
Leßig J., Fuchs B. (2009). Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. PubMed DOI
Li Y., Angelova A., Hu F., Garamus V. M., Peng C., Li N., et al. (2019). pH-Responsiveness of hexosomes and cubosomes for combined delivery of PubMed DOI
Lohner K. (1996). Is the high propensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? PubMed DOI
Lohner K., Balgavy P., Hermetter A., Paltauf F., Laggner P. (1991). Stabilization of non-bilayer structures by the ether lipid ethanolamine plasmalogen. PubMed DOI
Lohner K., Hermitter A., Paltauf F. (1984). Phase behavior of ethanolamine plasmalogen. DOI
Malthaner M., Hermetter A., Paltauf F., Seelig J. (1987). Structure and dynamics of plasmalogen model membranes containing cholesterol: a deuterium NMR study. PubMed DOI
Mannock D. A., Lewis R. N. A. H., McMullen T. P. W., McElhaney R. N. (2010). The effect of variations in phospholipid and sterol structure on the nature of lipid-sterol interactions in lipid bilayer model membranes. PubMed DOI
Mariani P., Luzzati V., Delacroix H. (1988). Cubic phases of lipid - containing systems. Structure analysis and biological implications. PubMed DOI
Mawatari S., Ohara S., Taniwaki Y., Tsuboi Y., Maruyama T., Fujino T. (2020). Improvement of blood plasmalogens and clinical symptoms in Parkinson’s disease by oral administration of ether phospholipids: A preliminary report. PubMed PMC
Messias M. C. F., Mecatti G. C., Priolli D. G., De Oliveira Carvalho P. (2018). Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer. PubMed DOI PMC
Muallem S., Chung W. Y., Jha A., Ahuja M. (2017). Lipids at membrane contact sites: cell signaling and ion transport. PubMed DOI PMC
Munn N. J., Arnio E., Liu D., Zoeller R. A., Liscum L. (2003). Deficiency in ethanolamine plasmalogen leads to altered cholesterol transport. PubMed DOI
Paul S., Lancaster G. I., Meikle P. J. (2019). Plasmalogens: a potential therapeutic target for neurodegenerative and cardiometabolic disease. PubMed DOI
Pohl E. E., Jovanovic O. (2019). The role of phosphatidylethanolamine adducts in modification of the activity of membrane proteins under oxidative stress. PubMed DOI PMC
Rakotoarisoa M., Angelov B., Espinoza S., Khakurel K., Bizien T., Angelova A. (2019). Cubic liquid crystalline nanostructures involving catalase and curcumin: BioSAXS study and catalase peroxidatic function after cubosomal nanoparticle treatment of differentiated SH-SY5Y cells. PubMed PMC
Reiss D., Beyer K., Engelmann B. (1997). Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. PubMed DOI PMC
Rog T., Koivuniemi A. (2016). The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations. PubMed DOI PMC
Saab S., Mazzocco J., Creuzot-Garcher C. P., Bron A. M., Bretillon L., Acar N., et al. (2014). Plasmalogens in the retina: from occurrence in retinal cell membranes to potential involvement in pathophysiology of retinal diseases. PubMed DOI
Seddon J. M. (1990). Structure of the inverted hexagonal (HII). phase, and non-lamellar phase transitions of lipids. PubMed DOI
Seddon J. M., Templer R. H. (1995). “Polymorphism of lipid-water systems,” in DOI
Shaharabani R., Ram-On M., Avinery R., Aharoni R., Arnon R., Talmon Y., et al. (2016). Structural transition in myelin membrane as initiator of multiple sclerosis. PubMed DOI
Shao X., Bor G., Al-Hosayni S., Salentinig S., Yaghmur A. (2018). Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. PubMed DOI
Sibomana I., Grobe N., Delraso N. J., Reo N. V. (2019). Influence of myo-inositol plus ethanolamine on plasmalogens and cell viability during oxidative stress. PubMed DOI
Snyder F. (1999). The ether lipid trail: a historical perspective. PubMed
Su X. Q., Wang J., Sinclair A. J. (2019). Plasmalogens and Alzheimer’s disease: a review. PubMed PMC
Sutter I., Klingenberg R., Othman A., Rohrer L., Landmesser U., Heg D., et al. (2016). Decreased phosphatidylcholine plasmalogens - A putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. PubMed DOI
Sutter I., Velagapudi S., Othman A., Riwanto M., Manz J., Rohrer L., et al. (2015). Plasmalogens of high-density lipoproteins (HDL). are associated with coronary artery disease and anti-apoptotic activity of HDL. PubMed DOI
Talaikis M., Valldeperas M., Matulaitiene I., Borzova J. L., Barauskas J., Niaura G., et al. (2019). On the molecular interactions in lipid bilayer-water assemblies of different curvatures. PubMed DOI
Thai T.-P., Rodemer C., Jauch A., Hunziker A., Moser A., Gorgas K., et al. (2001). Impaired membrane traffic in defective ether lipid biosynthesis. PubMed DOI
Thompson D. H., Gerasimov O. V., Wheeler J. J., Rui Y., Anderson V. C. (1996). Triggerable plasmalogen liposomes: improvement of system efficiency. PubMed DOI
Wallner S., Schmitz G. (2011). Plasmalogens the neglected regulatory and scavenging lipid species. PubMed DOI
Wang W., Zetterlund P. B., Boyer C., Boyd B. J., Atherton T. J., Spicer P. T. (2018). Large hexosomes from emulsion droplets: Particle shape and mesostructure control. PubMed DOI
West A., Zoni V., Teague W. E., Jr., Leonard A. N., Vanni S., Gawrisch K., et al. (2020). How do ethanolamine plasmalogens contribute to order and structure of neurological membranes? PubMed DOI PMC
Yaghmur A., Glatter O. (2009). Characterization and potential applications of nanostructured aqueous dispersions. PubMed DOI
Yamashita S., Kanno S., Nakagawa K., Kinoshita M., Miyazawa T. (2015). Extrinsic plasmalogens suppress neuronal apoptosis in mouse neuroblastoma Neuro-2A cells: importance of plasmalogen molecular species. DOI
Zhai J., Fong C., Tran N., Drummond C. J. (2019). Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. PubMed DOI
Zoeller R., Lake A., Nagan N., Gaposchkin D., Legner M., Lieberthal W. (1999). Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. PubMed DOI PMC
Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies