Sustained CREB phosphorylation by lipid-peptide liquid crystalline nanoassemblies

. 2023 Nov 06 ; 6 (1) : 241. [epub] 20231106

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37932487

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000447 (ELIBIO) EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)

Odkazy

PubMed 37932487
PubMed Central PMC10628290
DOI 10.1038/s42004-023-01043-9
PII: 10.1038/s42004-023-01043-9
Knihovny.cz E-zdroje

Cyclic-AMP-response element-binding protein (CREB) is a leucine zipper class transcription factor that is activated through phosphorylation. Ample CREB phosphorylation is required for neurotrophin expression, which is of key importance for preventing and regenerating neurological disorders, including the sequelae of long COVID syndrome. Here we created lipid-peptide nanoassemblies with different liquid crystalline structural organizations (cubosomes, hexosomes, and vesicles) as innovative nanomedicine delivery systems of bioactive PUFA-plasmalogens (vinyl ether phospholipids with polyunsaturated fatty acid chains) and a neurotrophic pituitary adenylate cyclase-activating polypeptide (PACAP). Considering that plasmalogen deficiency is a potentially causative factor for neurodegeneration, we examined the impact of nanoassemblies type and incubation time in an in vitro Parkinson's disease (PD) model as critical parameters for the induction of CREB phosphorylation. The determined kinetic changes in CREB, AKT, and ERK-protein phosphorylation reveal that non-lamellar PUFA-plasmalogen-loaded liquid crystalline lipid nanoparticles significantly prolong CREB activation in the neurodegeneration model, an effect unattainable with free drugs, and this effect can be further enhanced by the cell-penetrating peptide PACAP. Understanding the sustained CREB activation response to neurotrophic nanoassemblies might lead to more efficient use of nanomedicines in neuroregeneration.

Zobrazit více v PubMed

Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021;6:1078–1094. doi: 10.1038/s41578-021-00358-0. PubMed DOI PMC

Zhai J, Fong C, Tran N, Drummond CJ. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano. 2019;13:6178–6206. doi: 10.1021/acsnano.8b07961. PubMed DOI

Fong W-K, Negrini R, Vallooran JJ, Mezzenga R, Boyd BJ. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci. 2016;484:320–339. doi: 10.1016/j.jcis.2016.08.077. PubMed DOI

Angelova A, Angelov B, Mutafchieva R, Lesieur S, Couvreur P. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc. Chem. Res. 2011;44:147–156. doi: 10.1021/ar100120v. PubMed DOI

Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B. 2021;11:871–885. doi: 10.1016/j.apsb.2021.02.013. PubMed DOI PMC

Lai X, et al. A polytherapy based approach to combat antimicrobial resistance using cubosomes. Nat. Commun. 2022;13:343. doi: 10.1038/s41467-022-28012-5. PubMed DOI PMC

Deng Y, Angelova A. Coronavirus-induced host cubic membranes and lipid-related antiviral therapies: a focus on bioactive plasmalogens. Front. Cell Dev. Biol. 2021;9:630242. doi: 10.3389/fcell.2021.630242. PubMed DOI PMC

Angelova A, Angelov B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen. Res. 2017;12:886–889. doi: 10.4103/1673-5374.208546. PubMed DOI PMC

Dully M, Ceresnakova M, Murray D, Soulimane T, Hudson SP. Lipid cubic systems for sustained and controlled delivery of antihistamine drugs. Mol. Pharm. 2021;18:3777–3794. doi: 10.1021/acs.molpharmaceut.1c00279. PubMed DOI PMC

Phan S, Fong W-K, Kirby N, Hanley T, Boyd BJ. Evaluating the link between self-assembled mesophase structure and drug release. Int. J. Pharm. 2011;421:176–182. doi: 10.1016/j.ijpharm.2011.09.022. PubMed DOI

Nguyen T-H, Hanley T, Porter CJH, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J. Controlled Release. 2011;153:180–186. doi: 10.1016/j.jconrel.2011.03.033. PubMed DOI

Rakotoarisoa M, et al. Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress. Smart Mater. Med. 2022;3:274–288. doi: 10.1016/j.smaim.2022.03.001. DOI

Vu MN, Kelly HG, Kent SJ, Wheatley AK. Current and future nanoparticle vaccines for COVID-19. eBioMedicine. 2021;74:103699. doi: 10.1016/j.ebiom.2021.103699. PubMed DOI PMC

Dourado D, et al. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials? Biomed. Pharmacother. 2021;139:111578. doi: 10.1016/j.biopha.2021.111578. PubMed DOI PMC

Valizadeh H, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int. Immunopharmacol. 2020;89:107088. doi: 10.1016/j.intimp.2020.107088. PubMed DOI PMC

Chaudhry Z, Klenja D, Janjua N, Cami-Kobeci G, Ahmed B. COVID-19 and Parkinson’s Disease: shared inflammatory pathways under oxidative stress. Brain Sci. 2020;10:807. doi: 10.3390/brainsci10110807. PubMed DOI PMC

Villa C, Rivellini E, Lavitrano M, Combi R. Can SARS-CoV-2 infection exacerbate Alzheimer’s Disease? An overview of shared risk factors and pathogenetic mechanisms. J. Pers. Med. 2022;12:29. doi: 10.3390/jpm12010029. PubMed DOI PMC

Wijeratne T, Crewther S. Post-COVID 19 Neurological Syndrome (PCNS); a novel syndrome with challenges for the global neurology community. J. Neurol. Sci. 2020;419:117179. doi: 10.1016/j.jns.2020.117179. PubMed DOI PMC

Hu C, Chen C, Dong X-P. Impact of COVID-19 pandemic on patients with neurodegenerative diseases. Front. Aging Neurosci. 2021;13:664965. doi: 10.3389/fnagi.2021.664965. PubMed DOI PMC

Hou Y, et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019;15:565–581. doi: 10.1038/s41582-019-0244-7. PubMed DOI

Jack CR, et al. NIA‐AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC

Akanchise T, Angelova A. Potential of nano-antioxidants and nanomedicine for recovery from neurological disorders linked to long COVID syndrome. Antioxidants. 2023;12:393. doi: 10.3390/antiox12020393. PubMed DOI PMC

Hansson O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021;27:954–963. doi: 10.1038/s41591-021-01382-x. PubMed DOI

Mantamadiotis T, et al. Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 2002;31:47–54. doi: 10.1038/ng882. PubMed DOI

Chi H, Chang H-Y, Sang T-K. Neuronal cell death mechanisms in major neurodegenerative diseases. Int. J. Mol. Sci. 2018;19:3082. doi: 10.3390/ijms19103082. PubMed DOI PMC

Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019;2019:1–18. doi: 10.1155/2019/2105607. PubMed DOI PMC

Peng C, Trojanowski JQ, Lee VM-Y. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 2020;16:199–212. doi: 10.1038/s41582-020-0333-7. PubMed DOI PMC

Liu F-C, Graybiel AM. Dopamine and calcium signal interactions in the developing striatum: control by kinetics of CREB phosphorylation. Adv. Pharmacol. 1997;42:682–686. doi: 10.1016/S1054-3589(08)60840-6. PubMed DOI

Hossain MdS, Mawatari S, Fujino T. Plasmalogens, the vinyl ether-linked glycerophospholipids, enhance learning and memory by regulating brain-derived neurotrophic factor. Front. Cell Dev. Biol. 2022;10:828282. doi: 10.3389/fcell.2022.828282. PubMed DOI PMC

Rehman SU, et al. Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells. 2019;8:760. doi: 10.3390/cells8070760. PubMed DOI PMC

Schmid R-S, et al. NCAM stimulates the ras-MAPK pathway and CREB phosphorylation in neuronal cells. J. Neurobiol. 1999;38:542–558. doi: 10.1002/(SICI)1097-4695(199903)38:4<542::AID-NEU9>3.0.CO;2-1. PubMed DOI

Espana J, et al. b-Amyloid Disrupts Activity-Dependent Gene Transcription Required for Memory through the CREB Coactivator CRTC1. J. Neurosci. 2010;30:9402–9410. doi: 10.1523/JNEUROSCI.2154-10.2010. PubMed DOI PMC

Pugazhenthi S, Wang M, Pham S, Sze C-I, Eckman CB. Downregulation of CREB expression in Alzheimer’s brain and in ab-treated rat hippocampal neurons. Mol. Neurodegener. 2011;6:60. doi: 10.1186/1750-1326-6-60. PubMed DOI PMC

Namgyal D, Ali S, Mehta R, Sarwat M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology. 2020;442:152542. doi: 10.1016/j.tox.2020.152542. PubMed DOI

Zhao W-N, et al. Activation of WNT and CREB signaling pathways in human neuronal cells in response to the Omega-3 fatty acid docosahexaenoic acid (DHA) Mol. Cell. Neurosci. 2019;99:103386. doi: 10.1016/j.mcn.2019.06.006. PubMed DOI PMC

Hossain MS, Mawatari S, Fujino T. Plasmalogens inhibit neuroinflammation and promote cognitive function. Brain Res. Bull. 2023;192:56–61. doi: 10.1016/j.brainresbull.2022.11.005. PubMed DOI

Fujino T, et al. Effects of plasmalogen on patients with mild cognitive impairment: a randomized, placebo-controlled trial in Japan. J. Alzheimer’s Dis. Parkinsonism. 2018;08:08–419.

Che H, et al. EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. Food Funct. 2020;11:1729–1739. doi: 10.1039/C9FO02323B. PubMed DOI

Hossain MdS, et al. Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling. PLoS ONE. 2013;8:e83508. doi: 10.1371/journal.pone.0083508. PubMed DOI PMC

Maasz G, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis. Model. Mech. 2017;10:127–139. PubMed PMC

Yang R, et al. Therapeutic potential of PACAP for neurodegenerative diseases. Cell. Mol. Biol. Lett. 2015;20:265–278. doi: 10.1515/cmble-2015-0008. PubMed DOI

Brown D, Tamas A, Reglödi D, Tizabi Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s Disease. J. Mol. Neurosci. 2013;50:600–607. doi: 10.1007/s12031-013-0015-7. PubMed DOI PMC

Mohammad Y, Prentice RN, Boyd BJ, Rizwan SB. Comparison of cubosomes and hexosomes for the delivery of phenytoin to the brain. J. Colloid Interface Sci. 2022;605:146–154. doi: 10.1016/j.jcis.2021.07.070. PubMed DOI

Rizwan SB, Boyd BJ, Rades T, Hook S. Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin. Drug Deliv. 2010;7:1133–1144. doi: 10.1517/17425247.2010.515584. PubMed DOI

Rakotoarisoa M, et al. Composition-switchable liquid crystalline nanostructures as green formulations of curcumin and fish oil. ACS Sustain. Chem. Eng. 2021;9:14821–14835. doi: 10.1021/acssuschemeng.1c04706. DOI

Angelova A, Drechsler M, Garamus VM, Angelov B. Pep-lipid cubosomes and vesicles compartmentalized by micelles from self-assembly of multiple neuroprotective building blocks including a large peptide hormone PACAP-DHA. ChemNanoMat. 2019;5:1381–1389. doi: 10.1002/cnma.201900468. DOI

Angelova A, et al. Plasmalogen-based liquid crystalline multiphase structures involving docosapentaenoyl derivatives inspired by biological cubic membranes. Front. Cell Dev. Biol. 2021;9:617984. doi: 10.3389/fcell.2021.617984. PubMed DOI PMC

Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318:215–224. doi: 10.1007/s00441-004-0938-y. PubMed DOI

Blandini F, Armentero M-T, Martignoni E. The 6-hydroxydopamine model: News from the past. Parkinsonism Relat. Disord. 2008;14:S124–S129. doi: 10.1016/j.parkreldis.2008.04.015. PubMed DOI

Dyett BP, Yu H, Strachan J, Drummond CJ, Conn CE. Fusion dynamics of cubosome nanocarriers with model cell membranes. Nat. Commun. 2019;10:4492. doi: 10.1038/s41467-019-12508-8. PubMed DOI PMC

Azhari H, Younus M, Hook SM, Boyd BJ, Rizwan SB. Cubosomes enhance drug permeability across the blood–brain barrier in zebrafish. Int. J. Pharm. 2021;600:120411. doi: 10.1016/j.ijpharm.2021.120411. PubMed DOI

Francia V, Reker-Smit C, Salvati A. Mechanisms of uptake and membrane curvature generation for the internalization of silica nanoparticles by cells. Nano Lett. 2022;22:3118–3124. doi: 10.1021/acs.nanolett.2c00537. PubMed DOI PMC

Thomson AC, et al. The effects of serum removal on gene expression and morphological plasticity markers in differentiated SH-SY5Y cells. Cell. Mol. Neurobiol. 2022;42:1829–1839. doi: 10.1007/s10571-021-01062-x. PubMed DOI PMC

Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 2016;108:53193. PubMed PMC

Lazaroff M, Qi Y, Chikaraishi DM. Differentiation of a catecholaminergic CNS cell line modifies tyrosine hydroxylase transcriptional regulation. J. Neurochem. 1998;71:51–59. doi: 10.1046/j.1471-4159.1998.71010051.x. PubMed DOI

Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011;508:1–12. doi: 10.1016/j.abb.2010.12.017. PubMed DOI PMC

Satoh T, et al. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci. Lett. 2000;288:163–166. doi: 10.1016/S0304-3940(00)01229-5. PubMed DOI

Lin E, Cavanaugh JE, Leak RK, Perez RG, Zigmond MJ. Rapid activation of ERK by 6-hydroxydopamine promotes survival of dopaminergic cells. J. Neurosci. Res. 2008;86:108–117. doi: 10.1002/jnr.21478. PubMed DOI

Lamprecht R. CREB: a message to remember. Cell. Mol. Life Sci. 1999;55:554–563. doi: 10.1007/s000180050314. PubMed DOI PMC

Rauch J, Kolch W, Laurent S, Mahmoudi M. Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem. Rev. 2013;113:3391–3406. doi: 10.1021/cr3002627. PubMed DOI

Nazemidashtarjandi S, Vahedi A, Farnoud AM. Lipid chemical structure modulates the disruptive effects of nanomaterials on membrane models. Langmuir. 2020;36:4923–4932. doi: 10.1021/acs.langmuir.0c00295. PubMed DOI PMC

Alfredsson, V., Lo Nostro, P., Ninham, B. & Nylander, T. Morphologies and structure of brain lipid membrane dispersions. Front. Cell Dev. Biol. 9, 675140 (2021). PubMed PMC

Ramalho MJ, Andrade S, Loureiro JA, do Carmo Pereira M. Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds. Drug Deliv. Transl. Res. 2020;10:380–402. doi: 10.1007/s13346-019-00694-3. PubMed DOI

Guerzoni LPB, Nicolas V, Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res. 2017;34:492–505. doi: 10.1007/s11095-016-2080-4. PubMed DOI

Hossain MdS, Mineno K, Katafuchi T. Neuronal orphan G-protein coupled receptor proteins mediate plasmalogens-induced activation of ERK and Akt signaling. PLOS ONE. 2016;11:e0150846. doi: 10.1371/journal.pone.0150846. PubMed DOI PMC

Zhu L, et al. Ebola virus VP35 hijacks the PKA-CREB1 pathway for replication and pathogenesis by AKIP1 association. Nat. Commun. 2022;13:2256. doi: 10.1038/s41467-022-29948-4. PubMed DOI PMC

Rakotoarisoa M, Angelov B, Garamus VM, Angelova A. Curcumin- and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega. 2019;4:3061–3073. doi: 10.1021/acsomega.8b03101. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...