Crimean-Congo Hemorrhagic Fever Virus Past Infections Are Associated with Two Innate Immune Response Candidate Genes in Dromedaries
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 29623
Austrian Science Fund FWF - Austria
MBRU-CM-RG2019-13
Mohammed Bin Rashid University of Medicine and Health Sciences
MBRU-CM-RG2018-14
Mohammed Bin Rashid University of Medicine and Health Sciences
P29623-B25
FWF Austrian Science Fund
PubMed
35011568
PubMed Central
PMC8750074
DOI
10.3390/cells11010008
PII: cells11010008
Knihovny.cz E-zdroje
- Klíčová slova
- Camelus dromedarius, Old World camel, in-solution hybridization capture, tick, vector-borne infection, zoonosis,
- MeSH
- genetická predispozice k nemoci genetika MeSH
- genotyp MeSH
- hemoragická horečka krymská genetika imunologie virologie MeSH
- infestace klíšťaty imunologie parazitologie MeSH
- klíšťata imunologie fyziologie virologie MeSH
- koronavirové infekce genetika imunologie virologie MeSH
- kuřecí embryo MeSH
- lidé MeSH
- odolnost vůči nemocem genetika imunologie MeSH
- přirozená imunita genetika imunologie MeSH
- rizikové faktory MeSH
- velbloudi genetika imunologie virologie MeSH
- virus krymsko-konžské hemoragické horečky imunologie fyziologie MeSH
- zoonózy genetika imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené arabské emiráty MeSH
Dromedaries are an important livestock, used as beasts of burden and for meat and milk production. However, they can act as an intermediate source or vector for transmitting zoonotic viruses to humans, such as the Middle East respiratory syndrome coronavirus (MERS-CoV) or Crimean-Congo hemorrhagic fever virus (CCHFV). After several outbreaks of CCHFV in the Arabian Peninsula, recent studies have demonstrated that CCHFV is endemic in dromedaries and camel ticks in the United Arab Emirates (UAE). There is no apparent disease in dromedaries after the bite of infected ticks; in contrast, fever, myalgia, lymphadenopathy, and petechial hemorrhaging are common symptoms in humans, with a case fatality ratio of up to 40%. We used the in-solution hybridization capture of 100 annotated immune genes to genotype 121 dromedaries from the UAE tested for seropositivity to CCHFV. Through univariate linear regression analysis, we identified two candidate genes belonging to the innate immune system: FCAR and CLEC2B. These genes have important functions in the host defense against viral infections and in stimulating natural killer cells, respectively. This study opens doors for future research into immune defense mechanisms in an enzootic host against an important zoonotic disease.
Al Ain City Municipality Al Ain 505055 United Arab Emirates
Center for Virology Medical University of Vienna 1090 Vienna Austria
Department of Animal Genetics University of Veterinary Sciences Brno 61242 Brno Czech Republic
RG Animal Immunogenomics CEITEC VETUNI Brno 61242 Brno Czech Republic
Zobrazit více v PubMed
Ciccarese S., Burger P.A., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front Genet. 2019;10:997. doi: 10.3389/fgene.2019.00997. PubMed DOI PMC
Jovčevska I., Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs. 2020;34:11–26. doi: 10.1007/s40259-019-00392-z. PubMed DOI PMC
Hanke L., Perez L.V.D.J.S., Das H., Schulte T., Morro A.M., Corcoran M., Achour A., Hedestam G.K., Hällberg B.M., Murrell B., et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat. Commun. 2020;11:4420. doi: 10.1038/s41467-020-18174-5. PubMed DOI PMC
Wrapp D., De Vlieger D., Corbett K.S., Torres G.M., Wang N., Van Breedam W., Roose K., van Schie L., Hoffmann M., Pöhlmann S., et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell. 2020;181:1004–1015.e15. doi: 10.1016/j.cell.2020.04.031. PubMed DOI PMC
Koenig P.-A., Das H., Liu H., Kümmerer B.M., Gohr F.N., Jenster L.-M., Schiffelers L.D.J., Tesfamariam Y.M., Uchima M., Wuerth J.D., et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science. 2021;371:eabe6230. doi: 10.1126/science.abe6230. PubMed DOI PMC
Engering A., Hogerwerf L., Slingenbergh J. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2013;2:1–7. doi: 10.1038/emi.2013.5. PubMed DOI PMC
Zhu S., Zimmerman D., Deem S.L. A Review of Zoonotic Pathogens of Dromedary Camels. Ecohealth. 2019;16:356–377. doi: 10.1007/s10393-019-01413-7. PubMed DOI PMC
Lado S., Elbers J.P., Plasil M., Loney T., Weidinger P., Camp J.V., Kolodziejek J., Futas J., Kannan D.A., Orozco-terWengel P., et al. Innate and Adaptive Immune Genes Associated with MERS-CoV Infection in Dromedaries. Cells. 2021;10:1291. doi: 10.3390/cells10061291. PubMed DOI PMC
Weidinger P., Kolodziejek J., Camp J.V., Loney T., Kannan D.O., Ramaswamy S., Tayoun A.A., Corman V.M., Nowotny N. MERS-CoV in sheep, goats, and cattle, United Arab Emirates, 2019: Virological and serological investigations reveal an accidental spillover from dromedaries. Transbound. Emerg. Dis. 2021:1–7. doi: 10.1111/tbed.14306. PubMed DOI PMC
Camp J.V., Kannan D.O., Osman B.M., Shah M.S., Howarth B., Khafaga T., Weidinger P., Karuvantevida N., Kolodziejek J., Mazrooei H., et al. Crimean-Congo Hemorrhagic Fever Virus Endemicity in United Arab Emirates, 2019. Emerg. Infect. Dis. 2020;26:1019–1021. doi: 10.3201/eid2605.191414. PubMed DOI PMC
Khalafalla A.I., Li Y., Uehara A., Hussein N.A., Zhang J., Tao Y., Bergeron E., Ibrahim I.H., Al Hosani M.A., Yusof M.F., et al. Identification of a novel lineage of Crimean-Congo haemorrhagic fever virus in dromedary camels, United Arab Emirates. J. Gen. Virol. 2021;102:001473. doi: 10.1099/jgv.0.001473. PubMed DOI PMC
Sorvillo T.E., Rodriguez S.E., Hudson P., Carey M., Rodriguez L.L., Spiropoulou C.F., Bird B.H., Spengler J.R., Bente D.A. Towards a sustainable one health approach to crimean-congo hemorrhagic fever prevention: Focus areas and gaps in knowledge. Trop. Med. Infect. Dis. 2020;5:113. doi: 10.3390/tropicalmed5030113. PubMed DOI PMC
Deyde V.M., Khristova M.L., Rollin P.E., Ksiazek T.G., Nichol S.T. Crimean-Congo Hemorrhagic Fever Virus Genomics and Global Diversity. J. Virol. 2006;80:8834–8842. doi: 10.1128/JVI.00752-06. PubMed DOI PMC
Camp J.V., Weidinger P., Ramaswamy S., Kannan D.O., Osman B.M., Kolodziejek J., Karuvantevida N., Tayoun A.A., Loney T., Nowotny N. Association of Dromedary Camels and Camel Ticks with Enzootic Transmission of Reassortant CCHFV, United Arab Emirates. Emerg. Infect. Dis. 2021;27:2471–2474. doi: 10.3201/eid2709.210299. PubMed DOI PMC
Ergonul O. Crimean-Congo hemorrhagic fever virus: New outbreaks, new discoveries. Curr. Opin. Virol. 2012;2:215–220. doi: 10.1016/j.coviro.2012.03.001. PubMed DOI
Schwarz T.F., Nsanze H., Longson M., Nitschko H., Gilch S., Shurie H., Ameen A., Zahir A.R.M., Acharya U.G., Jager G. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean-Congo hemorrhagic fever virus in the United Arab Emirates. Am. J. Trop. Med. Hyg. 1996;55:190–196. doi: 10.4269/ajtmh.1996.55.190. PubMed DOI
Apanaskevich D.A., Filippova N.A., Horak I.G. The genus Hyalomma koch, 1844. X. Redescription of all parasitic stages of H. (Euhyalomma) scupense schulze, 1919 (= H. detritum Schulze) (Acari: Ixodidae) and notes on its biology. Folia Parasitol. 2010;57:69–78. doi: 10.14411/fp.2010.009. PubMed DOI
Apanaskevich D.A., Schuster A.L., Horak I.G. The genus Hyalomma: VII. Redescription of all parasitic stages of H. (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae) J. Med. Entomol. 2008;45:817–831. doi: 10.1093/jmedent/45.5.817. PubMed DOI
Whitehouse C.A. Crimean-Congo hemorrhagic fever. Antivir. Res. 2004;64:145–160. doi: 10.1016/j.antiviral.2004.08.001. PubMed DOI
Lado S., Elbers J.P., Rogers M.F., Melo-Ferreira J., Yadamsuren A., Corander J., Horin P., Burger P.A. Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genom. 2020;21:606. doi: 10.1186/s12864-020-06990-4. PubMed DOI PMC
Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., De Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188. doi: 10.1214/aos/1013699998. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013.
Turner S.D. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. J. Open Source Softw. 2018;3:731. doi: 10.21105/joss.00731. DOI
Yin T., Cook D., Lawrence M. ggbio: An R package for extending the grammar of graphics for genomic data. Genome Biol. 2012;13:R77. doi: 10.1186/gb-2012-13-8-r77. PubMed DOI PMC
Narum S.R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 2006;7:783–787. doi: 10.1007/s10592-005-9056-y. DOI
Hebsgaard S.M., Korning P.G., Tolstrup N., Engelbrecht J., Rouzé P., Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24:3439–3452. doi: 10.1093/nar/24.17.3439. PubMed DOI PMC
Brunak S., Engelbrecht J., Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 1991;220:49–65. doi: 10.1016/0022-2836(91)90380-O. PubMed DOI
Gossner C., Danielson N., Gervelmeyer A., Berthe F., Faye B., Kaasik Aaslav K., Adlhoch C., Zeller H., Penttinen P., Coulombier D. Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection. Zoonoses Public Health. 2016;63:1–9. doi: 10.1111/zph.12171. PubMed DOI PMC
Megersa B., Biffa D., Abunna F., Regassa A., Bohlin J., Skjerve E. Epidemic characterization and modeling within herd transmission dynamics of an “emerging trans-boundary” camel disease epidemic in Ethiopia. Trop. Anim. Health Prod. 2012;44:1643–1651. doi: 10.1007/s11250-012-0119-z. PubMed DOI
Ujvari B., Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int. J. Mol. Sci. 2011;12:5168–5186. doi: 10.3390/ijms12085168. PubMed DOI PMC
Hussen J., Schuberth H.-J. Recent Advances in Camel Immunology. Front. Immunol. 2021;11:614150. doi: 10.3389/fimmu.2020.614150. PubMed DOI PMC
Spengler J.R., Estrada-Peña A., Garrison A.R., Schmaljohn C., Spiropoulou C.F., Bergeron É., Bente D.A. A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antivir. Res. 2016;135:31–47. doi: 10.1016/j.antiviral.2016.09.013. PubMed DOI PMC
Shahhosseini N., Wong G., Babuadze G., Camp J.V., Ergonul O., Kobinger G.P., Chinikar S., Nowotny N. Crimean-Congo Hemorrhagic Fever Virus in Asia, Africa and Europe. Microorganisms. 2021;9:1907. doi: 10.3390/microorganisms9091907. PubMed DOI PMC
Suliman H.M., Adam I.A., Saeed S.I., Abdelaziz S.A., Haroun E.M., Aradaib I.E. Crimean Congo hemorrhagic fever among the one-humped camel (Camelus dromedaries) in Central Sudan. Virol. J. 2017;14:147. doi: 10.1186/s12985-017-0816-3. PubMed DOI PMC
Bouaicha F., Eisenbarth A., Elati K., Schulz A., Smida B.B., Bouajila M., Sassi L., Rekik M., Groschup M.H., Khbou M.K. Epidemiological investigation of Crimean-Congo haemorrhagic fever virus infection among the one-humped camels (Camelus dromedarius) in southern Tunisia. Ticks Tick Borne Dis. 2021;12:101601. doi: 10.1016/j.ttbdis.2020.101601. PubMed DOI
Schulz A., Barry Y., Stoek F., Ba A., Schulz J., Haki M.L., Sas M.A., Doumbia B.A., Kirkland P., Bah M.Y., et al. Crimean-congo hemorrhagic fever virus antibody prevalence in mauritanian livestock (Cattle, goats, sheep and camels) is stratified by the animal’s age. PLoS Negl. Trop. Dis. 2021;15:e0009228. doi: 10.1371/journal.pntd.0009228. PubMed DOI PMC
Kurtz J., Kalbe M., Aeschlimann P.B., Häberli M.A., Wegner K.M., Reusch T.B.H., Milinski M. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc. R. Soc. B Biol. Sci. 2004;271:197–204. doi: 10.1098/rspb.2003.2567. PubMed DOI PMC
Spreu J., Kienle E.C., Schrage B. CLEC2A: A novel, alternatively spliced and skin-associated member of the NKC-encoded AICL–CD69–LLT1 family. Immunogenetics. 2007;59:903–912. doi: 10.1007/s00251-007-0263-1. PubMed DOI
Hamann J., Montgomery K.T., Lau S., Kucherlapati R., Lier A.W.V.L. AICL: A new activation-induced antigen encoded by the human NK gene complex. Immunogenetics. 1997;45:295–300. doi: 10.1007/s002510050208. PubMed DOI
Neuss S., Bartel Y., Born C., Weil S., Koch J., Behrends C., Hoffmeister M., Steinle A. Cellular Mechanisms Controlling Surfacing of AICL Glycoproteins, Cognate Ligands of the Activating NK Receptor NKp80. J. Immunol. 2018;201:1275–1286. doi: 10.4049/jimmunol.1800059. PubMed DOI
Koch J., Steinle A., Watzl C., Mandelboim O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34:182–191. doi: 10.1016/j.it.2013.01.003. PubMed DOI
Brown G.D., Willment J.A., Whitehead L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018;18:374–389. doi: 10.1038/s41577-018-0004-8. PubMed DOI
Hoober J.K., Eggink L.L., Cote R. Stories from the Dendritic Cell Guardhouse. Front. Immunol. 2019;10:2880. doi: 10.3389/fimmu.2019.02880. PubMed DOI PMC
Li X., Gibson A.W., Kimberly R.P. Human FcR Polymorphism and Disease. In: Daëron M., Nimmerjahn F., editors. Current Topics in Microbiology and Immunology. Volume 382. Springer International Publishing; Cham, Switzerland: 2014. pp. 275–302. PubMed PMC
Maliszewski B.C.R., March C.J., Schoenborn M.A., Gimpel S., Shen L. Expression Cloning of a Human Fc Receptor for IgA. J. Exp. Med. 1990;172:1665–1672. doi: 10.1084/jem.172.6.1665. PubMed DOI PMC