Crimean-Congo Hemorrhagic Fever Virus Past Infections Are Associated with Two Innate Immune Response Candidate Genes in Dromedaries

. 2021 Dec 21 ; 11 (1) : . [epub] 20211221

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35011568

Grantová podpora
P 29623 Austrian Science Fund FWF - Austria
MBRU-CM-RG2019-13 Mohammed Bin Rashid University of Medicine and Health Sciences
MBRU-CM-RG2018-14 Mohammed Bin Rashid University of Medicine and Health Sciences
P29623-B25 FWF Austrian Science Fund

Dromedaries are an important livestock, used as beasts of burden and for meat and milk production. However, they can act as an intermediate source or vector for transmitting zoonotic viruses to humans, such as the Middle East respiratory syndrome coronavirus (MERS-CoV) or Crimean-Congo hemorrhagic fever virus (CCHFV). After several outbreaks of CCHFV in the Arabian Peninsula, recent studies have demonstrated that CCHFV is endemic in dromedaries and camel ticks in the United Arab Emirates (UAE). There is no apparent disease in dromedaries after the bite of infected ticks; in contrast, fever, myalgia, lymphadenopathy, and petechial hemorrhaging are common symptoms in humans, with a case fatality ratio of up to 40%. We used the in-solution hybridization capture of 100 annotated immune genes to genotype 121 dromedaries from the UAE tested for seropositivity to CCHFV. Through univariate linear regression analysis, we identified two candidate genes belonging to the innate immune system: FCAR and CLEC2B. These genes have important functions in the host defense against viral infections and in stimulating natural killer cells, respectively. This study opens doors for future research into immune defense mechanisms in an enzootic host against an important zoonotic disease.

Zobrazit více v PubMed

Ciccarese S., Burger P.A., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front Genet. 2019;10:997. doi: 10.3389/fgene.2019.00997. PubMed DOI PMC

Jovčevska I., Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs. 2020;34:11–26. doi: 10.1007/s40259-019-00392-z. PubMed DOI PMC

Hanke L., Perez L.V.D.J.S., Das H., Schulte T., Morro A.M., Corcoran M., Achour A., Hedestam G.K., Hällberg B.M., Murrell B., et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat. Commun. 2020;11:4420. doi: 10.1038/s41467-020-18174-5. PubMed DOI PMC

Wrapp D., De Vlieger D., Corbett K.S., Torres G.M., Wang N., Van Breedam W., Roose K., van Schie L., Hoffmann M., Pöhlmann S., et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell. 2020;181:1004–1015.e15. doi: 10.1016/j.cell.2020.04.031. PubMed DOI PMC

Koenig P.-A., Das H., Liu H., Kümmerer B.M., Gohr F.N., Jenster L.-M., Schiffelers L.D.J., Tesfamariam Y.M., Uchima M., Wuerth J.D., et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science. 2021;371:eabe6230. doi: 10.1126/science.abe6230. PubMed DOI PMC

Engering A., Hogerwerf L., Slingenbergh J. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2013;2:1–7. doi: 10.1038/emi.2013.5. PubMed DOI PMC

Zhu S., Zimmerman D., Deem S.L. A Review of Zoonotic Pathogens of Dromedary Camels. Ecohealth. 2019;16:356–377. doi: 10.1007/s10393-019-01413-7. PubMed DOI PMC

Lado S., Elbers J.P., Plasil M., Loney T., Weidinger P., Camp J.V., Kolodziejek J., Futas J., Kannan D.A., Orozco-terWengel P., et al. Innate and Adaptive Immune Genes Associated with MERS-CoV Infection in Dromedaries. Cells. 2021;10:1291. doi: 10.3390/cells10061291. PubMed DOI PMC

Weidinger P., Kolodziejek J., Camp J.V., Loney T., Kannan D.O., Ramaswamy S., Tayoun A.A., Corman V.M., Nowotny N. MERS-CoV in sheep, goats, and cattle, United Arab Emirates, 2019: Virological and serological investigations reveal an accidental spillover from dromedaries. Transbound. Emerg. Dis. 2021:1–7. doi: 10.1111/tbed.14306. PubMed DOI PMC

Camp J.V., Kannan D.O., Osman B.M., Shah M.S., Howarth B., Khafaga T., Weidinger P., Karuvantevida N., Kolodziejek J., Mazrooei H., et al. Crimean-Congo Hemorrhagic Fever Virus Endemicity in United Arab Emirates, 2019. Emerg. Infect. Dis. 2020;26:1019–1021. doi: 10.3201/eid2605.191414. PubMed DOI PMC

Khalafalla A.I., Li Y., Uehara A., Hussein N.A., Zhang J., Tao Y., Bergeron E., Ibrahim I.H., Al Hosani M.A., Yusof M.F., et al. Identification of a novel lineage of Crimean-Congo haemorrhagic fever virus in dromedary camels, United Arab Emirates. J. Gen. Virol. 2021;102:001473. doi: 10.1099/jgv.0.001473. PubMed DOI PMC

Sorvillo T.E., Rodriguez S.E., Hudson P., Carey M., Rodriguez L.L., Spiropoulou C.F., Bird B.H., Spengler J.R., Bente D.A. Towards a sustainable one health approach to crimean-congo hemorrhagic fever prevention: Focus areas and gaps in knowledge. Trop. Med. Infect. Dis. 2020;5:113. doi: 10.3390/tropicalmed5030113. PubMed DOI PMC

Deyde V.M., Khristova M.L., Rollin P.E., Ksiazek T.G., Nichol S.T. Crimean-Congo Hemorrhagic Fever Virus Genomics and Global Diversity. J. Virol. 2006;80:8834–8842. doi: 10.1128/JVI.00752-06. PubMed DOI PMC

Camp J.V., Weidinger P., Ramaswamy S., Kannan D.O., Osman B.M., Kolodziejek J., Karuvantevida N., Tayoun A.A., Loney T., Nowotny N. Association of Dromedary Camels and Camel Ticks with Enzootic Transmission of Reassortant CCHFV, United Arab Emirates. Emerg. Infect. Dis. 2021;27:2471–2474. doi: 10.3201/eid2709.210299. PubMed DOI PMC

Ergonul O. Crimean-Congo hemorrhagic fever virus: New outbreaks, new discoveries. Curr. Opin. Virol. 2012;2:215–220. doi: 10.1016/j.coviro.2012.03.001. PubMed DOI

Schwarz T.F., Nsanze H., Longson M., Nitschko H., Gilch S., Shurie H., Ameen A., Zahir A.R.M., Acharya U.G., Jager G. Polymerase chain reaction for diagnosis and identification of distinct variants of Crimean-Congo hemorrhagic fever virus in the United Arab Emirates. Am. J. Trop. Med. Hyg. 1996;55:190–196. doi: 10.4269/ajtmh.1996.55.190. PubMed DOI

Apanaskevich D.A., Filippova N.A., Horak I.G. The genus Hyalomma koch, 1844. X. Redescription of all parasitic stages of H. (Euhyalomma) scupense schulze, 1919 (= H. detritum Schulze) (Acari: Ixodidae) and notes on its biology. Folia Parasitol. 2010;57:69–78. doi: 10.14411/fp.2010.009. PubMed DOI

Apanaskevich D.A., Schuster A.L., Horak I.G. The genus Hyalomma: VII. Redescription of all parasitic stages of H. (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae) J. Med. Entomol. 2008;45:817–831. doi: 10.1093/jmedent/45.5.817. PubMed DOI

Whitehouse C.A. Crimean-Congo hemorrhagic fever. Antivir. Res. 2004;64:145–160. doi: 10.1016/j.antiviral.2004.08.001. PubMed DOI

Lado S., Elbers J.P., Rogers M.F., Melo-Ferreira J., Yadamsuren A., Corander J., Horin P., Burger P.A. Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genom. 2020;21:606. doi: 10.1186/s12864-020-06990-4. PubMed DOI PMC

Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC

Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., De Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188. doi: 10.1214/aos/1013699998. DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013.

Turner S.D. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. J. Open Source Softw. 2018;3:731. doi: 10.21105/joss.00731. DOI

Yin T., Cook D., Lawrence M. ggbio: An R package for extending the grammar of graphics for genomic data. Genome Biol. 2012;13:R77. doi: 10.1186/gb-2012-13-8-r77. PubMed DOI PMC

Narum S.R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 2006;7:783–787. doi: 10.1007/s10592-005-9056-y. DOI

Hebsgaard S.M., Korning P.G., Tolstrup N., Engelbrecht J., Rouzé P., Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24:3439–3452. doi: 10.1093/nar/24.17.3439. PubMed DOI PMC

Brunak S., Engelbrecht J., Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 1991;220:49–65. doi: 10.1016/0022-2836(91)90380-O. PubMed DOI

Gossner C., Danielson N., Gervelmeyer A., Berthe F., Faye B., Kaasik Aaslav K., Adlhoch C., Zeller H., Penttinen P., Coulombier D. Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection. Zoonoses Public Health. 2016;63:1–9. doi: 10.1111/zph.12171. PubMed DOI PMC

Megersa B., Biffa D., Abunna F., Regassa A., Bohlin J., Skjerve E. Epidemic characterization and modeling within herd transmission dynamics of an “emerging trans-boundary” camel disease epidemic in Ethiopia. Trop. Anim. Health Prod. 2012;44:1643–1651. doi: 10.1007/s11250-012-0119-z. PubMed DOI

Ujvari B., Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int. J. Mol. Sci. 2011;12:5168–5186. doi: 10.3390/ijms12085168. PubMed DOI PMC

Hussen J., Schuberth H.-J. Recent Advances in Camel Immunology. Front. Immunol. 2021;11:614150. doi: 10.3389/fimmu.2020.614150. PubMed DOI PMC

Spengler J.R., Estrada-Peña A., Garrison A.R., Schmaljohn C., Spiropoulou C.F., Bergeron É., Bente D.A. A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antivir. Res. 2016;135:31–47. doi: 10.1016/j.antiviral.2016.09.013. PubMed DOI PMC

Shahhosseini N., Wong G., Babuadze G., Camp J.V., Ergonul O., Kobinger G.P., Chinikar S., Nowotny N. Crimean-Congo Hemorrhagic Fever Virus in Asia, Africa and Europe. Microorganisms. 2021;9:1907. doi: 10.3390/microorganisms9091907. PubMed DOI PMC

Suliman H.M., Adam I.A., Saeed S.I., Abdelaziz S.A., Haroun E.M., Aradaib I.E. Crimean Congo hemorrhagic fever among the one-humped camel (Camelus dromedaries) in Central Sudan. Virol. J. 2017;14:147. doi: 10.1186/s12985-017-0816-3. PubMed DOI PMC

Bouaicha F., Eisenbarth A., Elati K., Schulz A., Smida B.B., Bouajila M., Sassi L., Rekik M., Groschup M.H., Khbou M.K. Epidemiological investigation of Crimean-Congo haemorrhagic fever virus infection among the one-humped camels (Camelus dromedarius) in southern Tunisia. Ticks Tick Borne Dis. 2021;12:101601. doi: 10.1016/j.ttbdis.2020.101601. PubMed DOI

Schulz A., Barry Y., Stoek F., Ba A., Schulz J., Haki M.L., Sas M.A., Doumbia B.A., Kirkland P., Bah M.Y., et al. Crimean-congo hemorrhagic fever virus antibody prevalence in mauritanian livestock (Cattle, goats, sheep and camels) is stratified by the animal’s age. PLoS Negl. Trop. Dis. 2021;15:e0009228. doi: 10.1371/journal.pntd.0009228. PubMed DOI PMC

Kurtz J., Kalbe M., Aeschlimann P.B., Häberli M.A., Wegner K.M., Reusch T.B.H., Milinski M. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc. R. Soc. B Biol. Sci. 2004;271:197–204. doi: 10.1098/rspb.2003.2567. PubMed DOI PMC

Spreu J., Kienle E.C., Schrage B. CLEC2A: A novel, alternatively spliced and skin-associated member of the NKC-encoded AICL–CD69–LLT1 family. Immunogenetics. 2007;59:903–912. doi: 10.1007/s00251-007-0263-1. PubMed DOI

Hamann J., Montgomery K.T., Lau S., Kucherlapati R., Lier A.W.V.L. AICL: A new activation-induced antigen encoded by the human NK gene complex. Immunogenetics. 1997;45:295–300. doi: 10.1007/s002510050208. PubMed DOI

Neuss S., Bartel Y., Born C., Weil S., Koch J., Behrends C., Hoffmeister M., Steinle A. Cellular Mechanisms Controlling Surfacing of AICL Glycoproteins, Cognate Ligands of the Activating NK Receptor NKp80. J. Immunol. 2018;201:1275–1286. doi: 10.4049/jimmunol.1800059. PubMed DOI

Koch J., Steinle A., Watzl C., Mandelboim O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34:182–191. doi: 10.1016/j.it.2013.01.003. PubMed DOI

Brown G.D., Willment J.A., Whitehead L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018;18:374–389. doi: 10.1038/s41577-018-0004-8. PubMed DOI

Hoober J.K., Eggink L.L., Cote R. Stories from the Dendritic Cell Guardhouse. Front. Immunol. 2019;10:2880. doi: 10.3389/fimmu.2019.02880. PubMed DOI PMC

Li X., Gibson A.W., Kimberly R.P. Human FcR Polymorphism and Disease. In: Daëron M., Nimmerjahn F., editors. Current Topics in Microbiology and Immunology. Volume 382. Springer International Publishing; Cham, Switzerland: 2014. pp. 275–302. PubMed PMC

Maliszewski B.C.R., March C.J., Schoenborn M.A., Gimpel S., Shen L. Expression Cloning of a Human Fc Receptor for IgA. J. Exp. Med. 1990;172:1665–1672. doi: 10.1084/jem.172.6.1665. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microsatellite markers of the major histocompatibility complex genomic region of domestic camels

. 2022 ; 13 () : 1015288. [epub] 20221024

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace