The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P 29623
Austrian Science Fund FWF - Austria
PubMed
31681428
PubMed Central
PMC6812646
DOI
10.3389/fgene.2019.00997
Knihovny.cz E-zdroje
- Klíčová slova
- Camelus bactrianus, Camelus dromedarius, Camelus ferus, Immunoglobulins, Immunome, Old World camelids, T cell receptors, major histocompatibility complex,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with "only-heavy-chain" (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5' end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3' end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions "Centromere-ClassII-ClassIII-ClassI". Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Department of Biology University of Bari Aldo Moro Bari Italy
Research Institute of Wildlife Ecology Vetmeduni Vienna Vienna Austria
Zobrazit více v PubMed
Achour I., Cavelier P., Tichit M., Bouchier C., Lafaye P., Rougeon F. (2008). Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J. Immunol. 181, 2001–2009. 10.4049/jimmunol.181.3.2001 PubMed DOI
Adams E. J., Chien Y. H., Garcia K. C. (2005). Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science 308, 227–231. 10.1126/science.1106885 PubMed DOI
Ali A., Baby B., Vijayan R. (2019). From desert to medicine: a review of camel genomics and therapeutic products. Front. Genet. 10, 17. 10.3389/fgene.2019.00017 PubMed DOI PMC
Allen R. L., Hogan L. (2013). “Non-Classical MHC Class I Molecules (MHC-Ib),” in eLS (Chichester, UK: John Wiley & Sons Ltd; ). 10.1002/9780470015902.a0024246 DOI
Allison T. J., Garboczi D. N. (2002). Structure of gammadelta T cell receptors and their recognition of non- peptide antigens. Mol. Immunol. 8, 1051–1061. 10.1016/S0161-5890(02)00034-2 PubMed DOI
Allison T. J., Winter C. C., Fournié J. J., Bonneville M., Garboczi D. N. (2001). Structure of a human gammadelta T-cell antigen receptor. Nature 411, 820–824. 10.1038/35081115 PubMed DOI
Antonacci R., Lanave C., Del Faro L., Vaccarelli G., Ciccarese S., Massari S. (2005). Artiodactyl emergence is accompanied by the birth of an extensive pool of diverse germline TRDV1 genes. Immunogenetics 57, 254–266. 10.1007/s00251-005-0773-7 PubMed DOI
Antonacci R., Di Tommaso S., Lanave C., Cribiu E. P., Ciccarese S., Massari S. (2008). Organization, structure and evolution of 41 kb of genomic DNA spanning the D-J-C region of the sheep TRB locus. Mol. Immunol. 45, 493–509. 10.1016/j.molimm.2007.05.023 PubMed DOI
Antonacci R., Mineccia M., Lefranc M. P., Ashmaoui H. M. E., Lanave C., Piccinni B., et al. (2011). Expression and genomic analyses of Camelus dromedarius T cell receptor delta (TRD) genes reveal a variable domain repertoire enlargement due to CDR3 diversification and somatic mutation. Mol. Immunol. 48, 1384–1396. 10.1016/j.molimm.2011.03.011 PubMed DOI
Antonacci R., Giannico F., Ciccarese S., Massari S. (2014). Genomic characteristics of the T cell receptor (TRB) locus in the rabbit (Oryctolagus cuniculus) revealed by comparative and phylogenetic analyses. Immunogenetics 66, 255–266. 10.1007/s00251-013-0754-1 PubMed DOI
Antonacci R., Bellini M., Pala A., Mineccia M., Hassanane M. S., Ciccarese S., et al. (2017. a). The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina. Dev. Comp. Immunol. 76, 105–119. 10.1016/j.dci.2017.05.021 PubMed DOI
Antonacci R., Bellini M., Castelli V., Ciccarese S., Massari S. (2017. b). Data charactering the genomic structure of the T cell receptor (TRB) locus in Camelus dromedarius. Data Brief 14, 507–514. 10.1016/j.dib.2017.08.002 PubMed DOI PMC
Antonacci R., Bellini M., Ciccarese S., Massari S. (2019). Comparative analysis of the TRB locus in the Camelus genus. Front. Genet. 10, 482. 10.3389/fgene.2019.00482 PubMed DOI PMC
Avila F., Baily M. P., Perelman P., Das P. J., Pontius J., Chowdhary R., et al. (2014). A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet. Genome Res. 144, 196–207. 10.1159/000370329 PubMed DOI
Baudisch B., Pfort I., Sorge E., Conrad U. (2018). Nanobody-Directed Specific Degradation of Proteins by the 26S-Proteasome in Plants. Front. Plant Sci. 9, 130. 10.3389/fpls.2018.00130 PubMed DOI PMC
Beghein E., Gettemans J. (2017). Nanobody Technology: A versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. Front. Immunol. 8, 771. 10.3389/fimmu.2017.00771 PubMed DOI PMC
Brooks C. L., Rossotti M. A., Henry K. A. (2018). Immunological functions and evolutionary emergence of heavy-chain antibodies. Trends Immunol. 39, 956–960. 10.1016/j.it.2018.09.008 PubMed DOI
Carding S. R., Egan P. J. (2002). Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345. 10.1038/nri797 PubMed DOI
Chen H., Kshirsagar S., Jensen I., Lau K., Covarrubias R., Schluter S. F., et al. (2009). Characterization of arrangement and expression of the T cell receptor gamma locus in the sandbar shark. Proc. Natl. Acad. Sci. U. S. A. 106, 8591–8596. 10.1073/pnas.0811283106 PubMed DOI PMC
Chen H., Bernstein H., Ranganathan P., Schluter S. F. (2012). Somatic hypermutation of TCR γ V genes in the sandbar shark. Dev. Comp. Immunol. 37, 176–183. 10.1016/j.dci.2011.08.018 PubMed DOI
Chothia C., Novotný J., Bruccoleri R., Karplus M. (1985). Domain association in immunoglobulin molecules. The packing of variable domains. J. Mol. Biol. 186, 651–663. 10.1016/0022-2836(85)90137-8 PubMed DOI
Ciccarese S., Lanave C., Saccone C. (1997). Evolution of T-cell receptors gamma and delta constant region and other T-cell related proteins in the human-rodent-artiodactyl triplet. Genetics 145, 409–419. PubMed PMC
Ciccarese S., Vaccarelli G., Lefranc M. P., Tasco G., Consiglio A., Casadio R., et al. (2014). Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains. Dev. Comp. Immunol. 46, 300–313. 10.1016/j.dci.2014.05.001 PubMed DOI
Connelley T., Aerts J., Law A., Morrison W. I. (2009). Genomic analysis reveals extensive gene duplication within the bovine TRB locus. BMC Genomics 10. 10.1186/1471-2164-10-192 PubMed DOI PMC
Conrad M. L., Mawer M. A., Lefranc M. P., McKinnell L., Whitehead J., Davis S. K., et al. (2007). The genomic sequence of the bovine T cell receptor gamma TRG loci and localization of the TRGC5 cassette. Vet. Immunol. Immunopathol. 115, 346–356. 10.1016/j.vetimm.2006.10.019 PubMed DOI
Davies J., Riechmann L. (1994). Camelising’ human antibody fragments: NMR studies on VH domains. FEBS Lett. 339, 285–290. 10.1016/0014-5793(94)80432-X PubMed DOI
Decanniere K., Desmyter A., Lauwereys M., Ghahroudi M. A., Muyldermans S., Wyns L. (1999). A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7, 361–370. 10.1016/S0969-2126(99)80049-5 PubMed DOI
De Genst E., Saerens D., Muyldermans S., Conrath K. (2006). Antibody repertoire development in camelids. Dev. Comp. Immunol. 30, 187–198. 10.1016/j.dci.2005.06.010 PubMed DOI
Deschacht N., De Groeve K., Vincke C., Raes G., De Baetselier P., Muyldermans S. (2010). A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J. Immunol. 184, 5696–5704. 10.4049/jimmunol.0903722 PubMed DOI
Desmyter A., Transue T. R., Ghahroudi M. A., Thi M. H., Poortmans F., Hamers R., et al. (1996). Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3, 803–811. 10.1038/nsb0996-803 PubMed DOI
Di Tommaso S., Antonacci R., Ciccarese S., Massari S. (2010). Extensive analysis of D-J-C arrangements allows the identification of different mechanisms enhancing the diversity in sheep T cell receptor beta-chain repertoire. BMC Genomics 11. 10.1186/1471-2164-11-3 PubMed DOI PMC
Eguchi-Ogawa T., Toki D., Uenishi H. (2009). Genomic structure of the whole D-J-C clusters and the upstream region coding V segments of the TRB locus in pig. Dev. Comp. Immunol. 33, 1111–1119. 10.1016/j.dci.2009.06.006 PubMed DOI
Ehrenmann F., Kaas Q., Lefranc M. P. (2010). IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res. 38, D301–D307. 10.1093/nar/gkp946 PubMed DOI PMC
Ehrenmann F., Giudicelli V., Duroux P., Lefranc M. P. (2011). IMGT/Collier de Perles: IMGT standardized representation of domains (IG, TR, and IgSF variable and constant domains, MH and MhSF groove domains). Cold Spring Harb. Protoc. 6, 726–736. 10.1101/pdb.prot5635 PubMed DOI
Fernandes J. C. (2018). Therapeutic application of antibody fragments in autoimmune diseases: current state and prospects. Drug Discov. Today 23, 1996–2002. 10.1016/j.drudis.2018.06.003 PubMed DOI
Fitak R. R., Mohandesan E., Corander J., Burger P. A. (2016. a). The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol. Ecol. Resour. 16, 314–324. 10.1111/1755-0998.12443 PubMed DOI PMC
Fitak R., Mohandesan E., Corander J., Yadamsuren A., Chuluunbat B., Abdelhadi O., et al. (2016. b). Genomic Footprints of Selection Under Domestication in Old World Camelids. Plant Animal Genomic Conf. XXIV. San Diego.
Flajnik M. F., Deschacht N., Muyldermans S. (2011). A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol. 9, e1001120. 10.1371/journal.pbio.1001120 PubMed DOI PMC
Govaert J., Pellis M., Deschacht N., Vincke C., Conrath K., Muyldermans S., et al. (2012). Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. J. Biol. Chem. 287, 1970–1979. 10.1074/jbc.M111.242818 PubMed DOI PMC
Griffin L. M., Snowden J. R., Lawson A. D., Wernery U., Kinne J., Baker T. S. (2014). Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species. J. Immunol. Methods 405, 35–46. 10.1016/j.jim.2014.01.003 PubMed DOI
Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B., et al. (1993). Naturally occurring antibodies devoid of light chains. Nature 363, 446–448. 10.1038/363446a0 PubMed DOI
Harmsen M. M., Ruuls R. C., Nijman I. J., Niewold T. A., Frenken L. G., de Geus B. (2000). Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol. Immunol. 37, 579–590. 10.1016/S0161-5890(00)00081-X PubMed DOI
Hassanzadeh-Ghassabeh G., Devoogdt N., De Pauw P., Vincke C., Muyldermans S. (2013). Nanobodies and their potential applications. Nanomedicine 8, 1013–1026. 10.2217/nnm.13.86 PubMed DOI
Hein W. R., Dudler L. (1993). Divergent evolution of T cell repertoires: extensive diversity and developmentally regulated expression of the sheep gamma delta T cell receptor. EMBO J. 12, 715–724. 10.1002/j.1460-2075.1993.tb05705.x PubMed DOI PMC
Hein W. R., Dudler L. (1997). TCR gamma delta cells are prominent in normal bovine skin and express a diverse repertoire of antigen receptors. Immunology 91, 58–64. 10.1046/j.1365-2567.1997.00224.x PubMed DOI PMC
Helma J., Cardoso M. C., Muyldermans S., Leonhardt H. (2015). Nanobodies and recombinant binders in cell biology. J. Cell Biol. 209, 633–644. 10.1083/jcb.201409074 PubMed DOI PMC
Henry K. A., van Faassen H., Harcus D., Marcil A., Hill J. J., Muyldermans S., et al. (2019). Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics 71, 307–320. 10.1007/s00251-018-01102-9 PubMed DOI
Ishiguro N., Aida Y., Shinagawa T., Shinagawa M. (1993). Molecular structures of cattle T-cell receptor gamma and delta chains predominantly expressed on peripheral blood lymphocytes. Immunogenetics 38, 437–443. 10.1007/BF00184524 PubMed DOI
Janeway C.A., Travers P., Walport M., et al. (2001). “Immunobiology: The Immune System in Health and Disease,” in The major histocompatibility complex and its functions, (New York: Garland Science). Available from: https://www.ncbi.nlm.nih.gov/books/NBK27156/.
Jirimutu, Wang. Z., Ding G., Chen G., Sun Y., Sun Z., et al. (2012). Genome sequences of wild and domestic bactrian camels. Nat. Commun. 3, 1202. 10.1038/ncomms2192 PubMed DOI PMC
Jung D., Alt F. W. (2004). Unraveling V(D)J recombination; insights into gene regulation. Cell 116, 299–311. 10.1016/S0092-8674(04)00039-X PubMed DOI
Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Kazen A. R., Adams E. J. (2011). Evolution of the V, D, and J gene segments used in the primate gammadelta T-cell receptor reveals a dichotomy of conservation and diversity. Proc. Natl. Acad. Sci. U. S. A. 108, 332–340. 10.1073/pnas.1105105108 PubMed DOI PMC
Lauwereys M., Arbabi Ghahroudi M., Desmyter A., Kinne J., Hölzer W., De Genst E., et al. (1998). Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17, 3512–3520. 10.1093/emboj/17.13.3512 PubMed DOI PMC
Lefranc M. P., Rabbitts T. H. (1989). The human T-cell receptor gamma (TRG) genes. Trends Biochem. Sci. 14, 214–218. 10.1016/0968-0004(89)90029-7 PubMed DOI
Lefranc M. P., Lefranc G. (2001. a). The Immunoglobulin Facts-Book. Academic, New York; 1–457.
Lefranc M. P., Lefranc G. (2001. b). The T cell Receptor Facts-Book. Academic, New York; 1–398.
Lefranc M.-P., Pommié C., Ruiz M., Giudicelli V., Foulquier E., Truong L., et al. (2003). IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V- like domains. Dev. Comp. Immunol. 27, 55–77. 10.1016/S0145-305X(02)00039-3 PubMed DOI
Lefranc M. P., Pommié C., Kaas Q., Duprat E., Bosc N., Guiraudou D., et al. (2005). IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains. Dev. Comp. Immunol. 29, 185–203. 10.1016/j.dci.2004.07.003 PubMed DOI
Lefranc M. P. (2011. a). IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb. Protoc. 6, 633–642. 10.1101/pdb.ip85 PubMed DOI
Lefranc M. P. (2011. b). IMGT Collier de Perles for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb. Protoc. 6, 643–651. 10.1101/pdb.ip86 PubMed DOI
Lefranc M. P. (2014. a). Immunoglobulin (IG) and T cell receptor genes (TR): IMGT® and the birth and rise of immunoinformatics. Front. Immunol. 5, 22. 10.3389/fimmu.2014.00022 PubMed DOI PMC
Lefranc M. P. (2014. b). “IMGT® immunoglobulin repertoire analysis and antibody humanization,” in Molecular Biology of B cells, Eds. Alt F. W., Honjo T., Radbruch A., Reth M. (London, UK: Academic Press, Elsevier Ltd; ), 481–514. 10.1016/B978-0-12-397933-9.00026-6 DOI
Lefranc M. P., Giudicelli V., Duroux P., Jabado-Michaloud J., Folch G., Aouinti S., et al. (2015). IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 43, D413–D422. 10.1093/nar/gku1056 PubMed DOI PMC
Lefranc M. P., Lefranc G. (2019). “IMGT® and 30 years of Immunoinformatics Insight in antibody V and C domain structure and function,” in Antibodies, vol. 8 . Eds. Jefferis R., Strohl W. R., Kato K., 29. 10.3390/antib8020029 PubMed DOI PMC
Li X., Duan X., Yang K., Zhang W., Zhang C., Fu L., et al. , (2016). Comparative analysis of immune repertoires between bactrian camel’s conventional and heavy-chain antibodies. PLoS One 11, e0161801. 10.1371/journal.pone.0161801 PubMed DOI PMC
Li Z., Woo C. J., Iglesias-Ussel M. D., Ronai D., Scharff M. D. (2004). The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18, 1–11. 10.1101/gad.1161904 PubMed DOI
Linguiti G., Antonacci R., Tasco G., Grande F., Casadio R., Massari S., et al. (2016). Genomic and expression analyses of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) loci reveal a similar basic public γδ repertoire in dolphin and human. BMC Genomics 17, 634–651. 10.1186/s12864-016-2841-9 PubMed DOI PMC
Liu M., Schatz D. G. (2009). Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 30, 173–181. 10.1016/j.it.2009.01.007 PubMed DOI
Loris R., Marianovsky I., Lah J., Laeremans T., Engelberg-Kulka H., Glaser G., et al. . (2003). Crystal structure of the intrinsically flexible addiction antidote MazE. J. Biol. Chem. 278, 28252–28257. 10.1074/jbc.M302336200 PubMed DOI
Massari S., Lipsi M. R., Vonghia G., Antonacci R., Ciccarese S. (1998). T-cell receptor TRG1 and TRG2 clusters map separately in two different regions of sheep chromosome 4. Chromosome Res. 6, 419–420. 10.1023/A:1009245830804 PubMed DOI
Massari S., Antonacci R., Lanave C., Ciccarese S. (2000). Genomic organization of sheep TRDJ segments and their expression in the delta chain repertoire in thymus. Immunogenetics 52, 1–8. 10.1007/s002510000243 PubMed DOI
Massari S., Bellahcene F., Vaccarelli G., Carelli G., Mineccia M., Lefranc M. P., et al. (2009). The deduced structure of the T cell receptor gamma locus in Canis lupus familiaris. Mol. Immunol. 46, 2728–2736. 10.1016/j.molimm.2009.05.008 PubMed DOI
Massari S., Bellini M., Ciccarese S., Antonacci R. (2018). Overview of the germline and expressed repertoires of the TRB genes in Sus scrofa. Front. Immunol. 9, 2526. 10.3389/fimmu.2018.02526 PubMed DOI PMC
McWilliam H. E., Eckle S. B., Theodossis A., Liu L., Chen Z., Wubben J. M., et al. (2016). The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat. Immunol. 17, 531–537. 10.1038/ni.3416 PubMed DOI
Miccoli M. C., Lipsi M. R., Massari S., Lanave C., Ciccarese S. (2001). Exon-intron organization of TRGC genes in sheep. Immunogenetics 53, 416–422. 10.1007/s002510100340 PubMed DOI
Miccoli M. C., Antonacci R., Vaccarelli G., Lanave C., Massari S., Cribiu E. P., et al. (2003). Evolution of TRG clusters in cattle and sheep genomes as drawn from the structural analysis of the ovine TRG2 @ locus. J. Mol. Evol. 57, 52–62. 10.1007/s00239-002-2451-9 PubMed DOI
Mineccia M., Massari S., Linguiti G., Ceci L., Ciccarese S., Antonacci R. (2012). New insight into the genomic structure of dog T cell receptor beta (TRB) locus inferred from expression analysis. Dev. Comp. Immunol. 37, 279–293. 10.1016/j.dci.2012.03.010 PubMed DOI
Mitchell L. S., Colwell L. J. (2018. a). Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng. Des. Sel. 31, 267–275. 10.1093/protein/gzy017 PubMed DOI PMC
Mitchell L. S., Colwell L. J. (2018. b). Comparative analysis of nanobody sequence and structure data. Proteins 86, 697–706. 10.1002/prot.25497 PubMed DOI PMC
Muyldermans S., Atarhouch T., Saldanha J., Barbosa J. A., Hamers R. (1994). Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 7, 1129–1135. 10.1093/protein/7.9.1129 PubMed DOI
Muyldermans S., Baral T. N., Retamozzo V. C., De Baetselier P., De Genst E., Kinne J., et al. (2009). Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 128, 178–183. 10.1016/j.vetimm.2008.10.299 PubMed DOI
Muyldermans S., Lauwereys M. (1999). Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J. Mol. Recogn. 12, 131–140. 10.1002/(SICI)1099-1352(199903/04)12:2<131::AID-JMR454>3.0.CO;2-M PubMed DOI
Muyldermans S. (2013). Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797. 10.1146/annurev-biochem-063011-092449 PubMed DOI
Nguyen V. K., Hamers R., Wyns L., Muyldermans S. (1999). Loss of splice consensus signal is responsible for the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chain antibodies. Mol. Immunol. 36, 515–524. 10.1016/S0161-5890(99)00067-X PubMed DOI
Nguyen V. K., Hamers R., Wyns L., Muyldermans S. (2000). Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J. 19, 921–930. 10.1093/emboj/19.5.921 PubMed DOI PMC
Nguyen V. K., Desmyter A., Muyldermans S. (2001). Functional heavy-chain antibodies in Camelidae. Adv. Immunol. 79, 261–296. 10.1016/S0065-2776(01)79006-2 PubMed DOI
Ott J. A., Castro C. D., Deiss T. C., Ohta Y., Flajnik M. F., Criscitiello M. F. (2018). Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus. Elife 17, 7. 10.7554/eLife.28477 PubMed DOI PMC
Pavlov Y. I., Rogozin I. B., Galkin A. P., Aksenova A. Y., Hanaoka F., Rada C., et al. (2002). Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase g during copying of a mouse immunoglobulin j light chain transgene. Proc. Natl. Acad. Sci. U. S. A. 99, 9954–9959. 10.1073/pnas.152126799 PubMed DOI PMC
Plasil M., Mohandesan E., Fitak R. R., Musilova P., Kubickova S., Burger P. A., et al. (2016). The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics 17, 167. 10.1186/s12864-016-2500-1 PubMed DOI PMC
Plasil M., Wijkmark S., Elbers J. P., Oppelt J., Burger P. A., Horin P. (2019). The major histocompatibility complex of Old World camelids: class I and class I-related genes. HLA 93, 203–215. 10.1111/tan.13510 PubMed DOI
Rissiek B., Koch-Nolte F., Magnus T. (2014). Nanobodies as modulators of inflammation: potential applications for acute brain injury. Front. Cell Neurosci. 8, 344. 10.3389/fncel.2014.00344 PubMed DOI PMC
Rogozin I. B., Diaz M. (2004). Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J. Immunol. 172, 3382–3384. 10.4049/jimmunol.172.6.3382 PubMed DOI
Saccodossi N., De Simone E. A., Leoni J. (2012). Structural analysis of effector functions related motifs, complement activation and hemagglutinating activities in Lama glama heavy chain antibodies. Vet. Immunol. Immunopathol. 145, 323–331. 10.1016/j.vetimm.2011.12.001 PubMed DOI
Schanz S., Castor D., Fischer F., Jiricny J. (2009). Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation. Proc. Natl. Acad. Sci. U. S. A. 106, 5593–5598. 10.1073/pnas.0901726106 PubMed DOI PMC
Schumacher D., Helma J., Schneider A. F. L., Leonhardt H., Hackenberger C. P. R. (2018). Nanobodies: chemical functionalization strategies and intracellular applications. Angew. Chem. Int. Ed. Engl. 57, 2314–2333. 10.1002/anie.201708459 PubMed DOI PMC
Shafi S., Vantourout P., Wallace G., Antoun A., Vaughan R., Stanford M., et al. . (2011). An NKG2D-mediated human lymphoid stress surveillance response with high interindividual variation. Sci. Transl. Med. 3, 113ra124. 10.1126/scitranslmed.3002922 PubMed DOI PMC
Sironi M., Cagliani R., Forni D., Clerici M. (2015). Evolutionary insights into host–pathogen interactions from mammalian sequence data. Nat. Rev. Gen. 16, 224. 10.1038/nrg3905 PubMed DOI PMC
Steeland S., Vandenbroucke R. E., Libert C. (2016). Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov. Today 21, 1076–1113. 10.1016/j.drudis.2016.04.003 PubMed DOI
Tamura K., Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526. 10.1093/oxfordjournals.molbev.a040023 PubMed DOI
Tillib S. V., Vyatchanin A. S., Muyldermans S. (2014). Molecular analysis of heavy chain-only antibodies of Camelus bactrianus. Biochemistry 79, 1382–1390. 10.1134/S000629791412013X PubMed DOI
Trowsdale J., Knight J. C. (2013). Major histocompatibility complex genomics and human disease. Ann. Rev. Gen. Hum. Gen. 14, 301–323. 10.1146/annurev-genom-091212-153455 PubMed DOI PMC
Vaccarelli G., Miccoli M. C., Lanave C., Massari S., Cribiu E. P., Ciccarese S. (2005). Genomic organization of the sheep TRG1{{{at}}} locus and comparative analyses of Bovidae and human variable genes. Gene 357, 103–114. 10.1016/j.gene.2005.05.033 PubMed DOI
Vaccarelli G., Miccoli M. C., Antonacci R., Pesole G., Ciccarese S. (2008). Genomic organization and recombinational unit duplication-driven evolution of ovine and bovine T cell receptor gamma loci. BMC Genomics 9, 81. 10.1186/1471-2164-9-81 PubMed DOI PMC
Vaccarelli G., Antonacci R., Tasco G., Yang F. T., Giordano L., El Ashmaoui H. M., et al. (2012). Generation of diversity by somatic mutation in the Camelus dromedarius T-cell receptor gamma variable domains. Eur. J. Immunol. 42, 3416–3428. 10.1002/eji.201142176 PubMed DOI
Vu K. B., Ghahroudi M. A., Wyns L., Muyldermans S. (1997). Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol. Immunol. 34, 1121–1131. 10.1016/S0161-5890(97)00146-6 PubMed DOI
Wilson T. M., Vaisman A., Martomo S. A., Sullivan P., Lan L., Hanaoka F., et al. (2005). MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A: T mutations in antibody genes. J. Exp. Med. 201, 637–645. 10.1084/jem.20042066 PubMed DOI PMC
Woolven B. P., Frenken L. G., van der Logt P., Nicholls P. J. (1999). The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50, 98–101. 10.1007/s002510050694 PubMed DOI
Wu H., Guang X., Al-Fageeh M. B., Cao J., Pan S., Zhou H., et al. . (2014). Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188. 10.1038/ncomms6188 PubMed DOI
Xiao G., Wang X., Sheng J., Lu S., Yu X., Wu J. D. (2015). Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. J. Hematol. Oncol. 8, 13. 10.1186/s13045-015-0110-z PubMed DOI PMC
Xu B., Pizarro J. C., Holmes M. A., McBeth C., Groh V., Spies T., et al. (2011). Crystal structure of a gammadelta T-cell receptor specific for the human MHC χλασσ I homolog MICA. Proc. Natl. Acad. Sci. U. S. A. 108, 2414–2419. 10.1073/pnas.1015433108 PubMed DOI PMC
Yang Y. G., Ohta S., Yamada S., Shimizu M., Takagaki Y. (1995). Diversity of T cell receptor delta-chain cDNA in the thymus of a one-month-old pig. J. Immunol. 155, 1981–1993. PubMed
Zhao Y., Gregory M. T., Biert¨mpfel, C., Hua Y.-J., Hanaoka F., Yangb W. (2013). Mechanism of somatic hypermutation at the WA motif by human DNA polimerase g. Proc. Natl. Acad. Sci. U. S. A. 110, 8146–8151. 10.1073/pnas.1303126110 PubMed DOI PMC
Microsatellite markers of the major histocompatibility complex genomic region of domestic camels
Innate and Adaptive Immune Genes Associated with MERS-CoV Infection in Dromedaries
A Deadly Cargo: Gene Repertoire of Cytotoxic Effector Proteins in the Camelidae
The Major Histocompatibility Complex of Old World Camels-A Synopsis