The Major Histocompatibility Complex of Old World Camels-A Synopsis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 24706
Austrian Science Fund FWF - Austria
P 29623
Austrian Science Fund FWF - Austria
PubMed
31590341
PubMed Central
PMC6829570
DOI
10.3390/cells8101200
PII: cells8101200
Knihovny.cz E-zdroje
- Klíčová slova
- Bactrian camel, MHC, Old World camels, SNP, camels, dromedary, major histocompatibility complex,
- MeSH
- antigeny Ly klasifikace genetika MeSH
- fylogeneze MeSH
- hlavní histokompatibilní komplex * MeSH
- jednonukleotidový polymorfismus MeSH
- prasata MeSH
- skot MeSH
- TNF-alfa klasifikace MeSH
- velbloudi genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny Ly MeSH
- TNF-alfa MeSH
This study brings new information on major histocompatibility complex (MHC) class III sub-region genes in Old World camels and integrates current knowledge of the MHC region into a comprehensive overview for Old World camels. Out of the MHC class III genes characterized, TNFA and the LY6 gene family showed high levels of conservation, characteristic for MHC class III loci in general. For comparison, an MHC class II gene TAP1, not coding for antigen presenting molecules but functionally related to MHC antigen presenting functions was studied. TAP1 had many SNPs, even higher than the MHC class I and II genes encoding antigen presenting molecules. Based on this knowledge and using new camel genomic resources, we constructed an improved genomic map of the entire MHC region of Old World camels. The MHC class III sub-region shows a standard organization similar to that of pig or cattle. The overall genomic structure of the camel MHC is more similar to pig MHC than to cattle MHC. This conclusion is supported by differences in the organization of the MHC class II sub-region, absence of functional DY genes, different organization of MIC genes in the MHC class I sub-region, and generally closer evolutionary relationships of camel and porcine MHC gene sequences analyzed so far.
Ceitec MU Masaryk University Kamenice 753 5 625 00 Brno Czech Republic
Ceitec VFU RG Animal Immunogenomics Palackeho trida 1 612 42 Brno Czech Republic
Zobrazit více v PubMed
Janeway C.A., Travers P., Walport M., Shlomchik M.J. Immunobiology: The Immune System in Health and Disease. 6th ed. Taylor & Francis Group, Garland Science; New York, NY, USA: 2005.
Hedrick P.W., Whittam T.S., Parham P. Heterozygosity at individual amino acid sites: Extremely high levels for HLA-A and-B genes. Proc. Natl. Acad. Sci. USA. 1991;88:5897–5901. doi: 10.1073/pnas.88.13.5897. PubMed DOI PMC
Kumánovics A., Takada T., Lindahl K.F. Genomic organization of the mammalian MHC. Annu. Rev. Immunol. 2003;21:629–657. doi: 10.1146/annurev.immunol.21.090501.080116. PubMed DOI
Winternitz J.C., Minchey S.G., Garamszegi L.Z., Huang S., Stephens P.R., Altizer S. Sexual selection explains more functional variation in the mammalian major histocompatibility complex than parasitism. Proc. Biol. Sci. 2013;280:20131605. doi: 10.1098/rspb.2013.1605. PubMed DOI PMC
Rocha R.G., Magalhães V., López-Bao J.V., van der Loo W., Llaneza L., Alvares F., Esteves P.J., Godinho R. Alternated selection mechanisms maintain adaptive diversity in different demographic scenarios of a large carnivore. BMC Evol. Biol. 2019;19:90. doi: 10.1186/s12862-019-1420-5. PubMed DOI PMC
Aguilar A., Roemer G., Debenham S., Binns M., Garcelon D., Wayne R.K. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl. Acad. Sci. USA. 2004;101:3490–3494. doi: 10.1073/pnas.0306582101. PubMed DOI PMC
Mikko S., Røed K., Schmutz S., Andersson L. Monomorphism and polymorphism at Mhc DRB loci in domestic and wild ruminants. Immunol. Rev. 1999;167:169–178. doi: 10.1111/j.1600-065X.1999.tb01390.x. PubMed DOI
Doxiadis G.G., Otting N., de Groot N.G., Bontrop R.E. Differential evolutionary MHC class II strategies in humans and rhesus macaques: Relevance for biomedical studies. Immunol. Rev. 2001;183:76–85. doi: 10.1034/j.1600-065x.2001.1830106.x. PubMed DOI
Bernatchez L., Landry C. MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years? J. Evol. Biol. 2003;16:363–377. doi: 10.1046/j.1420-9101.2003.00531.x. PubMed DOI
Burger P.A., Ciani E., Faye B. Old World camels in a modern world—A balancing act between conservation and genetic improvement. Anim. Genet. 2019 doi: 10.1111/age.12858. in press. PubMed DOI PMC
Wu H., Guang X., Al-Fageeh M.B., Cao J., Pan S., Zhou H., Zhang L., Abutarboush M.H., Xing Y., Xie Z. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 2014;5:5188. doi: 10.1038/ncomms6188. PubMed DOI
Ji R., Cui P., Ding F., Geng J., Gao H., Zhang H., Yu J., Hu S., Meng H. Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus) Anim. Genet. 2009;40:377–382. doi: 10.1111/j.1365-2052.2008.01848.x. PubMed DOI PMC
Silbermayr K., Orozco-terWengel P., Charruau P., Enkhbileg D., Walzer C., Vogl C., Schwarzenberger F., Kaczensky P., Burger P.A. High mitochondrial differentiation levels between wild and domestic Bactrian camels: A basis for rapid detection of maternal hybridization. Anim. Genet. 2010;41:315–318. doi: 10.1111/j.1365-2052.2009.01993.x. PubMed DOI
Sequencing T.B.C.G., Analysis Consortium Genome sequences of wild and domestic bactrian camels. Nat. Commun. 2012;3:1202. doi: 10.1038/ncomms2192. PubMed DOI PMC
Burger P.A. The history of Old World camelids in the light of molecular genetics. Trop. Anim. Health Pro. 2016;48:905–913. doi: 10.1007/s11250-016-1032-7. PubMed DOI PMC
Wernery U., Kinne J. Foot and mouth disease and similar virus infections in camelids: A review. Rev. Sci. Tech. Oie. 2012;31:907–918. doi: 10.20506/rst.31.3.2160. PubMed DOI
Dirie M.F., Abdurahman O. Observations on little known diseases of camels (Camelus dromedarius) in the Horn of Africa. Rev. Sci. Tech. Oie. 2003;22:1043–1050. doi: 10.20506/rst.22.3.1456. PubMed DOI
Al Kanhal H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010;20:811–821.
Ali A., Baby B., Vijayan R. Camel Genome-from Desert to Medicine. Front. Genet. 2019;10:17. doi: 10.3389/fgene.2019.00017. PubMed DOI PMC
Muyldermans S. Single domain camel antibodies: Current status. Rev. Mol. Biotech. 2001;74:277–302. doi: 10.1016/S1389-0352(01)00021-6. PubMed DOI
Ciccarese S.M., Burger P., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front. Genet. 2019 doi: 10.3389/fgene.2019.00997. Under review. PubMed DOI PMC
Antczak D. Proceedings of the Qatar Foundation Annual Research Conference, Doha, Qatar, 24–25, November, 2013. Hamad bin Khalifa University Press (HBKU Press); Doha, Qatar: 2013. Major histocompatibility complex genes of the dromedary camel; p. BIOP015. DOI
Avila F., Baily M.P., Perelman P., Das P.J., Pontius J., Chowdhary R., Owens E., Johnson W.E., Merriwether D.A., Raudsepp T. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos) Cytogenet. Genome Res. 2014;144:196–207. doi: 10.1159/000370329. PubMed DOI
Plasil M., Mohandesan E., Fitak R.R., Musilova P., Kubickova S., Burger P.A., Horin P. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics. 2016;17:167. doi: 10.1186/s12864-016-2500-1. PubMed DOI PMC
Plasil M., Wijkmark S., Elbers J.P., Oppelt J., Burger P., Horin P. The major histocompatibility complex of Old World camelids: Class I and class I-related genes. HLA. 2019;93:203–215. doi: 10.1111/tan.13510. PubMed DOI
Lado S., Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., et al. Reference-guided assembly of two Old World camel genomes and genomic diversity of Old World camelid immune response genes. Manuscript in preparation.
Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC
Fitak R.R., Mohandesan E., Corander J., Burger P.A. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol. Ecol. Resour. 2016;16:314–324. doi: 10.1111/1755-0998.12443. PubMed DOI PMC
Putnam N.H., O’Connell B.L., Stites J.C., Rice B.J., Blanchette M., Calef R., Troll C.J., Fields A., Hartley P.D., Sugnet C.W. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC
English A.C., Richards S., Han Y., Wang M., Vee V., Qu J., Qin X., Muzny D.M., Reid J.G., Worley K.C. Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7:e47768. doi: 10.1371/journal.pone.0047768. PubMed DOI PMC
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Tarasov A., Vilella A.J., Cuppen E., Nijman I.J., Prins P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–2034. doi: 10.1093/bioinformatics/btv098. PubMed DOI PMC
Jackman S.D., Vandervalk B.P., Mohamadi H., Chu J., Yeo S., Hammond S.A., Jahesh G., Khan H., Coombe L., Warren R.L. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017;27:768–777. doi: 10.1101/gr.214346.116. PubMed DOI PMC
Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol. Biol. Evol. 1992;9:678–687. PubMed
Jukes T.H., Cantor C.R. Evolution of protein molecules. Mammal. Prot. Metab. 1969;3:132.
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Plasil M. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: Oct 26, 2018. Comparative genomics of the major histocompatibility complex MHC.
Cantarel B.L., Korf I., Robb S.M., Parra G., Ross E., Moore B., Holt C., Alvarado A.S., Yandell M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC
Holt C., Yandell M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. doi: 10.1186/1471-2105-12-491. PubMed DOI PMC
Farrer R.A. Synima: A Synteny imaging tool for annotated genome assemblies. BMC Bioinform. 2017;18:507. doi: 10.1186/s12859-017-1939-7. PubMed DOI PMC
Chu W.M. Tumor necrosis factor. Cancer Lett. 2013;328:222–225. doi: 10.1016/j.canlet.2012.10.014. PubMed DOI PMC
Pan S., An P., Zhang R., He X., Yin G., Min W. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: Role in endothelial cell migration and angiogenesis. Mol. Cell. Biol. 2002;22:7512–7523. doi: 10.1128/MCB.22.21.7512-7523.2002. PubMed DOI PMC
Odbileg R., Konnai S., Ohashi K., Onuma M. Molecular cloning and phylogenetic analysis of inflammatory cytokines of Camelidae (llama and camel) J. Vet. Med. Sci. 2005;67:921–925. doi: 10.1292/jvms.67.921. PubMed DOI
Ranjan S., Bhushan B., Panigrahi M., Kumar A., Deb R., Kumar P., Sharma D. Association and expression analysis of single nucleotide polymorphisms of partial tumor necrosis factor alpha gene with mastitis in crossbred cattle. Anim. Biotechnol. 2015;26:98–104. doi: 10.1080/10495398.2014.929582. PubMed DOI
Lendez P.A., Passucci J.A., Poli M.A., Gutierrez S.E., Dolcini G.L., Ceriani M.C. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads. Arch. Virol. 2015;160:2001–2007. doi: 10.1007/s00705-015-2448-5. PubMed DOI
Kawasaki Y., Aoki Y., Magata F., Miyamoto A., Kawashima C., Hojo T., Okuda K., Shirasuna K., Shimizu T. The effect of single nucleotide polymorphisms in the tumor necrosis factor-α gene on reproductive performance and immune function in dairy cattle. J. Reprod. Develop. 2014;60:173–178. doi: 10.1262/jrd.2013-140. PubMed DOI PMC
Seitzer U., Gerdes J., Müller-Quernheim J. Genotyping in the MHC locus: Potential for defining predictive markers in sarcoidosis. Resp. Res. 2001;3:6. doi: 10.1186/rr178. PubMed DOI PMC
Mallya M., Campbell R.D., Aguado B. Characterization of the five novel Ly-6 superfamily members encoded in the MHC, and detection of cells expressing their potential ligands. Protein. Sci. 2006;15:2244–2256. doi: 10.1110/ps.062242606. PubMed DOI PMC
Trowsdale J., Hanson I., Mockridge I., Beck S., Townsendt A., Kelly A. Sequences encoded in the class II region of the MHC related to the ’ABC’ superfamily of transporters. Nature. 1990;348:741. doi: 10.1038/348741a0. PubMed DOI
Kaufman J. Co-evolution with chicken class I genes. Immunol. Rev. 2015;267:56–71. doi: 10.1111/imr.12321. PubMed DOI
Praest P., Luteijn R.D., Brak-Boer I.G.J., Lanfermeijer J., Hoelen H., Ijgosse L., Costa A.I., Gorham R.D., Lebbink R.J., Wiertz E. The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol. Immunol. 2018;101:55–64. doi: 10.1016/j.molimm.2018.05.025. PubMed DOI
Kulski J.K., Shiina T., Anzai T., Kohara S., Inoko H. Comparative genomic analysis of the MHC: The evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol. Rev. 2002;190:95–122. doi: 10.1034/j.1600-065X.2002.19008.x. PubMed DOI
Viļuma A., Mikko S., Hahn D., Skow L., Andersson G., Bergström T.F. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology. Sci. Rep. 2017;7:45518. doi: 10.1038/srep45518. PubMed DOI PMC
Wijacki J. ((Department of Animal Morphology, Physiology and Genetics, Mendel University, Brno, Czech Republic)). Personal communication. 2019.
Wang Q., Yang C. The phylogeny of the Cetartiodactyla based on complete mitochondrial genomes. Int. J. Biol. 2013;5:30. doi: 10.5539/ijb.v5n3p30. DOI
Mallya M., Campbell R.D., Aguado B. Transcriptional analysis of a novel cluster of LY-6 family members in the human and mouse major histocompatibility complex: Five genes with many splice forms. Genomics. 2002;80:113–123. doi: 10.1006/geno.2002.6794. PubMed DOI
Birch J., Sanjuan C.D.J., Guzman E., Ellis S.A. Genomic location and characterisation of MIC genes in cattle. Immunogenetics. 2008;60:477–483. doi: 10.1007/s00251-008-0306-2. PubMed DOI
Renard C., Vaiman M., Chiannilkulchai N., Cattolico L., Robert C., Chardon P. Sequence of the pig major histocompatibility region containing the classical class I genes. Immunogenetics. 2001;53:490–500. doi: 10.1007/s002510100348. PubMed DOI
Futas J., Oppelt J., Jelinek A., Elbers J.P., Wijacki J., Knoll A., Burger P.A., Horin P. Natural killer cell receptor genes in camels: Another mammalian model. Front. Genet. 2019;10:620. doi: 10.3389/fgene.2019.00620. PubMed DOI PMC