The Major Histocompatibility Complex of Old World Camels-A Synopsis

. 2019 Oct 05 ; 8 (10) : . [epub] 20191005

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31590341

Grantová podpora
P 24706 Austrian Science Fund FWF - Austria
P 29623 Austrian Science Fund FWF - Austria

This study brings new information on major histocompatibility complex (MHC) class III sub-region genes in Old World camels and integrates current knowledge of the MHC region into a comprehensive overview for Old World camels. Out of the MHC class III genes characterized, TNFA and the LY6 gene family showed high levels of conservation, characteristic for MHC class III loci in general. For comparison, an MHC class II gene TAP1, not coding for antigen presenting molecules but functionally related to MHC antigen presenting functions was studied. TAP1 had many SNPs, even higher than the MHC class I and II genes encoding antigen presenting molecules. Based on this knowledge and using new camel genomic resources, we constructed an improved genomic map of the entire MHC region of Old World camels. The MHC class III sub-region shows a standard organization similar to that of pig or cattle. The overall genomic structure of the camel MHC is more similar to pig MHC than to cattle MHC. This conclusion is supported by differences in the organization of the MHC class II sub-region, absence of functional DY genes, different organization of MIC genes in the MHC class I sub-region, and generally closer evolutionary relationships of camel and porcine MHC gene sequences analyzed so far.

Zobrazit více v PubMed

Janeway C.A., Travers P., Walport M., Shlomchik M.J. Immunobiology: The Immune System in Health and Disease. 6th ed. Taylor & Francis Group, Garland Science; New York, NY, USA: 2005.

Hedrick P.W., Whittam T.S., Parham P. Heterozygosity at individual amino acid sites: Extremely high levels for HLA-A and-B genes. Proc. Natl. Acad. Sci. USA. 1991;88:5897–5901. doi: 10.1073/pnas.88.13.5897. PubMed DOI PMC

Kumánovics A., Takada T., Lindahl K.F. Genomic organization of the mammalian MHC. Annu. Rev. Immunol. 2003;21:629–657. doi: 10.1146/annurev.immunol.21.090501.080116. PubMed DOI

Winternitz J.C., Minchey S.G., Garamszegi L.Z., Huang S., Stephens P.R., Altizer S. Sexual selection explains more functional variation in the mammalian major histocompatibility complex than parasitism. Proc. Biol. Sci. 2013;280:20131605. doi: 10.1098/rspb.2013.1605. PubMed DOI PMC

Rocha R.G., Magalhães V., López-Bao J.V., van der Loo W., Llaneza L., Alvares F., Esteves P.J., Godinho R. Alternated selection mechanisms maintain adaptive diversity in different demographic scenarios of a large carnivore. BMC Evol. Biol. 2019;19:90. doi: 10.1186/s12862-019-1420-5. PubMed DOI PMC

Aguilar A., Roemer G., Debenham S., Binns M., Garcelon D., Wayne R.K. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc. Natl. Acad. Sci. USA. 2004;101:3490–3494. doi: 10.1073/pnas.0306582101. PubMed DOI PMC

Mikko S., Røed K., Schmutz S., Andersson L. Monomorphism and polymorphism at Mhc DRB loci in domestic and wild ruminants. Immunol. Rev. 1999;167:169–178. doi: 10.1111/j.1600-065X.1999.tb01390.x. PubMed DOI

Doxiadis G.G., Otting N., de Groot N.G., Bontrop R.E. Differential evolutionary MHC class II strategies in humans and rhesus macaques: Relevance for biomedical studies. Immunol. Rev. 2001;183:76–85. doi: 10.1034/j.1600-065x.2001.1830106.x. PubMed DOI

Bernatchez L., Landry C. MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years? J. Evol. Biol. 2003;16:363–377. doi: 10.1046/j.1420-9101.2003.00531.x. PubMed DOI

Burger P.A., Ciani E., Faye B. Old World camels in a modern world—A balancing act between conservation and genetic improvement. Anim. Genet. 2019 doi: 10.1111/age.12858. in press. PubMed DOI PMC

Wu H., Guang X., Al-Fageeh M.B., Cao J., Pan S., Zhou H., Zhang L., Abutarboush M.H., Xing Y., Xie Z. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 2014;5:5188. doi: 10.1038/ncomms6188. PubMed DOI

Ji R., Cui P., Ding F., Geng J., Gao H., Zhang H., Yu J., Hu S., Meng H. Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus) Anim. Genet. 2009;40:377–382. doi: 10.1111/j.1365-2052.2008.01848.x. PubMed DOI PMC

Silbermayr K., Orozco-terWengel P., Charruau P., Enkhbileg D., Walzer C., Vogl C., Schwarzenberger F., Kaczensky P., Burger P.A. High mitochondrial differentiation levels between wild and domestic Bactrian camels: A basis for rapid detection of maternal hybridization. Anim. Genet. 2010;41:315–318. doi: 10.1111/j.1365-2052.2009.01993.x. PubMed DOI

Sequencing T.B.C.G., Analysis Consortium Genome sequences of wild and domestic bactrian camels. Nat. Commun. 2012;3:1202. doi: 10.1038/ncomms2192. PubMed DOI PMC

Burger P.A. The history of Old World camelids in the light of molecular genetics. Trop. Anim. Health Pro. 2016;48:905–913. doi: 10.1007/s11250-016-1032-7. PubMed DOI PMC

Wernery U., Kinne J. Foot and mouth disease and similar virus infections in camelids: A review. Rev. Sci. Tech. Oie. 2012;31:907–918. doi: 10.20506/rst.31.3.2160. PubMed DOI

Dirie M.F., Abdurahman O. Observations on little known diseases of camels (Camelus dromedarius) in the Horn of Africa. Rev. Sci. Tech. Oie. 2003;22:1043–1050. doi: 10.20506/rst.22.3.1456. PubMed DOI

Al Kanhal H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010;20:811–821.

Ali A., Baby B., Vijayan R. Camel Genome-from Desert to Medicine. Front. Genet. 2019;10:17. doi: 10.3389/fgene.2019.00017. PubMed DOI PMC

Muyldermans S. Single domain camel antibodies: Current status. Rev. Mol. Biotech. 2001;74:277–302. doi: 10.1016/S1389-0352(01)00021-6. PubMed DOI

Ciccarese S.M., Burger P., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front. Genet. 2019 doi: 10.3389/fgene.2019.00997. Under review. PubMed DOI PMC

Antczak D. Proceedings of the Qatar Foundation Annual Research Conference, Doha, Qatar, 24–25, November, 2013. Hamad bin Khalifa University Press (HBKU Press); Doha, Qatar: 2013. Major histocompatibility complex genes of the dromedary camel; p. BIOP015. DOI

Avila F., Baily M.P., Perelman P., Das P.J., Pontius J., Chowdhary R., Owens E., Johnson W.E., Merriwether D.A., Raudsepp T. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos) Cytogenet. Genome Res. 2014;144:196–207. doi: 10.1159/000370329. PubMed DOI

Plasil M., Mohandesan E., Fitak R.R., Musilova P., Kubickova S., Burger P.A., Horin P. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics. 2016;17:167. doi: 10.1186/s12864-016-2500-1. PubMed DOI PMC

Plasil M., Wijkmark S., Elbers J.P., Oppelt J., Burger P., Horin P. The major histocompatibility complex of Old World camelids: Class I and class I-related genes. HLA. 2019;93:203–215. doi: 10.1111/tan.13510. PubMed DOI

Lado S., Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., et al. Reference-guided assembly of two Old World camel genomes and genomic diversity of Old World camelid immune response genes. Manuscript in preparation.

Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC

Fitak R.R., Mohandesan E., Corander J., Burger P.A. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol. Ecol. Resour. 2016;16:314–324. doi: 10.1111/1755-0998.12443. PubMed DOI PMC

Putnam N.H., O’Connell B.L., Stites J.C., Rice B.J., Blanchette M., Calef R., Troll C.J., Fields A., Hartley P.D., Sugnet C.W. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. doi: 10.1101/gr.193474.115. PubMed DOI PMC

English A.C., Richards S., Han Y., Wang M., Vee V., Qu J., Qin X., Muzny D.M., Reid J.G., Worley K.C. Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7:e47768. doi: 10.1371/journal.pone.0047768. PubMed DOI PMC

Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Tarasov A., Vilella A.J., Cuppen E., Nijman I.J., Prins P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–2034. doi: 10.1093/bioinformatics/btv098. PubMed DOI PMC

Jackman S.D., Vandervalk B.P., Mohamadi H., Chu J., Yeo S., Hammond S.A., Jahesh G., Khan H., Coombe L., Warren R.L. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017;27:768–777. doi: 10.1101/gr.214346.116. PubMed DOI PMC

Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol. Biol. Evol. 1992;9:678–687. PubMed

Jukes T.H., Cantor C.R. Evolution of protein molecules. Mammal. Prot. Metab. 1969;3:132.

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Plasil M. Ph.D. Thesis. Masaryk University; Brno, Czech Republic: Oct 26, 2018. Comparative genomics of the major histocompatibility complex MHC.

Cantarel B.L., Korf I., Robb S.M., Parra G., Ross E., Moore B., Holt C., Alvarado A.S., Yandell M. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. doi: 10.1101/gr.6743907. PubMed DOI PMC

Holt C., Yandell M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. doi: 10.1186/1471-2105-12-491. PubMed DOI PMC

Farrer R.A. Synima: A Synteny imaging tool for annotated genome assemblies. BMC Bioinform. 2017;18:507. doi: 10.1186/s12859-017-1939-7. PubMed DOI PMC

Chu W.M. Tumor necrosis factor. Cancer Lett. 2013;328:222–225. doi: 10.1016/j.canlet.2012.10.014. PubMed DOI PMC

Pan S., An P., Zhang R., He X., Yin G., Min W. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: Role in endothelial cell migration and angiogenesis. Mol. Cell. Biol. 2002;22:7512–7523. doi: 10.1128/MCB.22.21.7512-7523.2002. PubMed DOI PMC

Odbileg R., Konnai S., Ohashi K., Onuma M. Molecular cloning and phylogenetic analysis of inflammatory cytokines of Camelidae (llama and camel) J. Vet. Med. Sci. 2005;67:921–925. doi: 10.1292/jvms.67.921. PubMed DOI

Ranjan S., Bhushan B., Panigrahi M., Kumar A., Deb R., Kumar P., Sharma D. Association and expression analysis of single nucleotide polymorphisms of partial tumor necrosis factor alpha gene with mastitis in crossbred cattle. Anim. Biotechnol. 2015;26:98–104. doi: 10.1080/10495398.2014.929582. PubMed DOI

Lendez P.A., Passucci J.A., Poli M.A., Gutierrez S.E., Dolcini G.L., Ceriani M.C. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads. Arch. Virol. 2015;160:2001–2007. doi: 10.1007/s00705-015-2448-5. PubMed DOI

Kawasaki Y., Aoki Y., Magata F., Miyamoto A., Kawashima C., Hojo T., Okuda K., Shirasuna K., Shimizu T. The effect of single nucleotide polymorphisms in the tumor necrosis factor-α gene on reproductive performance and immune function in dairy cattle. J. Reprod. Develop. 2014;60:173–178. doi: 10.1262/jrd.2013-140. PubMed DOI PMC

Seitzer U., Gerdes J., Müller-Quernheim J. Genotyping in the MHC locus: Potential for defining predictive markers in sarcoidosis. Resp. Res. 2001;3:6. doi: 10.1186/rr178. PubMed DOI PMC

Mallya M., Campbell R.D., Aguado B. Characterization of the five novel Ly-6 superfamily members encoded in the MHC, and detection of cells expressing their potential ligands. Protein. Sci. 2006;15:2244–2256. doi: 10.1110/ps.062242606. PubMed DOI PMC

Trowsdale J., Hanson I., Mockridge I., Beck S., Townsendt A., Kelly A. Sequences encoded in the class II region of the MHC related to the ’ABC’ superfamily of transporters. Nature. 1990;348:741. doi: 10.1038/348741a0. PubMed DOI

Kaufman J. Co-evolution with chicken class I genes. Immunol. Rev. 2015;267:56–71. doi: 10.1111/imr.12321. PubMed DOI

Praest P., Luteijn R.D., Brak-Boer I.G.J., Lanfermeijer J., Hoelen H., Ijgosse L., Costa A.I., Gorham R.D., Lebbink R.J., Wiertz E. The influence of TAP1 and TAP2 gene polymorphisms on TAP function and its inhibition by viral immune evasion proteins. Mol. Immunol. 2018;101:55–64. doi: 10.1016/j.molimm.2018.05.025. PubMed DOI

Kulski J.K., Shiina T., Anzai T., Kohara S., Inoko H. Comparative genomic analysis of the MHC: The evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol. Rev. 2002;190:95–122. doi: 10.1034/j.1600-065X.2002.19008.x. PubMed DOI

Viļuma A., Mikko S., Hahn D., Skow L., Andersson G., Bergström T.F. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology. Sci. Rep. 2017;7:45518. doi: 10.1038/srep45518. PubMed DOI PMC

Wijacki J. ((Department of Animal Morphology, Physiology and Genetics, Mendel University, Brno, Czech Republic)). Personal communication. 2019.

Wang Q., Yang C. The phylogeny of the Cetartiodactyla based on complete mitochondrial genomes. Int. J. Biol. 2013;5:30. doi: 10.5539/ijb.v5n3p30. DOI

Mallya M., Campbell R.D., Aguado B. Transcriptional analysis of a novel cluster of LY-6 family members in the human and mouse major histocompatibility complex: Five genes with many splice forms. Genomics. 2002;80:113–123. doi: 10.1006/geno.2002.6794. PubMed DOI

Birch J., Sanjuan C.D.J., Guzman E., Ellis S.A. Genomic location and characterisation of MIC genes in cattle. Immunogenetics. 2008;60:477–483. doi: 10.1007/s00251-008-0306-2. PubMed DOI

Renard C., Vaiman M., Chiannilkulchai N., Cattolico L., Robert C., Chardon P. Sequence of the pig major histocompatibility region containing the classical class I genes. Immunogenetics. 2001;53:490–500. doi: 10.1007/s002510100348. PubMed DOI

Futas J., Oppelt J., Jelinek A., Elbers J.P., Wijacki J., Knoll A., Burger P.A., Horin P. Natural killer cell receptor genes in camels: Another mammalian model. Front. Genet. 2019;10:620. doi: 10.3389/fgene.2019.00620. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microsatellite markers of the major histocompatibility complex genomic region of domestic camels

. 2022 ; 13 () : 1015288. [epub] 20221024

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace