• This record comes from PubMed

Microsatellite markers of the major histocompatibility complex genomic region of domestic camels

. 2022 ; 13 () : 1015288. [epub] 20221024

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Grant support
P 24706 Austrian Science Fund FWF - Austria
P 29623 Austrian Science Fund FWF - Austria

We identified and characterized 11 polymorphic microsatellite markers suitable for routine testing (three in the MHC class I sub-region, four in MHC class II and four in the MHC class III sub-region) of dromedaries and Bactrian camels. In total, 38 dromedaries and 33 Bactrian camels were genotyped, and interspecific differences were observed in the numbers of alleles and in allelic frequencies, as well as in the observed heterozygosity. These loci may be used as markers to study the adaptive genetic diversity of the MHC region in Old World camels.

See more in PubMed

Ali A., Baby B., Vijayan R. (2019). From desert to medicine: A review of camel genomics and therapeutic products. Front. Genet. 10, 17. 10.3389/fgene.2019.00017 PubMed DOI PMC

Axtner J., Sommer S. (2007). Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus . Immunogenetics 59 (5), 417–426. 10.1007/s00251-007-0205-y PubMed DOI

Burger P. A. (2016). The history of Old World camelids in the light of molecular genetics. Trop. Anim. Health Prod. 48 (5), 905–913. 10.1007/s11250-016-1032-7 PubMed DOI PMC

Carrillo-Bustamante P., Keşmir C., de Boer R. J. (2016). The evolution of natural killer cell receptors. Immunogenetics 68 (1), 3–18. 10.1007/s00251-015-0869-7 PubMed DOI PMC

Ciccarese S., Burger P. A., Ciani E., Castelli V., Linguiti G., Plasil M., et al. (2019). The camel adaptive immune receptors repertoire as a singular Example of structural and functional genomics. Front. Genet. 10, 997. 10.3389/fgene.2019.00997 PubMed DOI PMC

De Volo S. B., Reynolds R. T., Douglas M. R., Antolin M. F. (2008). An improved extraction method to increase DNA yield from molted feathers. Condor 110 (4), 762–766. 10.1525/cond.2008.8586 DOI

Excoffier L., Lischer H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under linux and windows. Mol. Ecol. Resour. 10, 564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI

Elbers J. P., Rogers M. F., Perelman P. L., Proskuryakova A. A., Serdyukova N. A., Johnson W. E., et al. (2019). Improving illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 19, 1015–1026. 10.1111/1755-0998.13020 PubMed DOI PMC

Field D., Wills C. (1996). Long, polymorphic microsatellites in simple organisms. Proc. Biol. Sci. 263 (1367), 209–215. 10.1098/rspb.1996.0033 PubMed DOI

Futas J., Oppelt J., Jelinek A., Elbers J. P., Wijacki J., Knoll A., et al. (2019). Natural killer cell receptor genes in camels: Another mammalian model. Front. Genet. 10, 620. 10.3389/fgene.2019.00620 PubMed DOI PMC

Holderegger R., Kamm U., Gugerli F. (2006). Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landsc. Ecol. 21, 797–807. 10.1007/s10980-005-5245-9 DOI

Horecky C., Horecka E., Futas J., Janova E., Horin P., Knoll A. (2018). Microsatellite markers for evaluating the diversity of the natural killer complex and major histocompatibility complex genomic regions in domestic horses. HLA 91 (4), 271–279. 10.1111/tan.13211 PubMed DOI

Hussen J., Schuberth H-J. (2021). Recent advances in camel immunology. Front. Immunol. 11, 614150. 10.3389/fimmu.2020.614150 PubMed DOI PMC

Jaworska J., Ropka-Molik K., Wocławek-Potocka I., Siemieniuch M. (2020). Inter- and intrabreed diversity of the major histocompatibility complex (MHC) in primitive and draft horse breeds. PLoS ONE 15 (2), e0228658. 10.1371/journal.pone.0228658 PubMed DOI PMC

Kamath P. L., Getz W. M. (2012). Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations. PLoS One 7 (12), e50971. 10.1371/journal.pone.0050971 PubMed DOI PMC

Khalkhali-Evrigh R., Hedayat-Evrigh N., Hafezian S. H., Farhadi A., Bakhtiarizadeh M. R. (2019). Genome-wide identification of microsatellites and transposable elements in the dromedary camel genome using whole-genome sequencing data. Front. Genet. 10, 692. 10.3389/fgene.2019.00692 PubMed DOI PMC

Lado S., Elbers J. P., Plasil M., Loney T., Weidinger P., Camp J. V., et al. (2021). Innate and adaptive immune genes associated with MERS-CoV infection in dromedaries. Cells 10 (6), 1291. 10.3390/cells10061291 PubMed DOI PMC

Lado S., Elbers J. P., Rogers M. F., Melo-Ferreira J., Yadamsuren A., Corander J., et al. (2020). Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genomics 21, 606. 10.1186/s12864-020-06990-4 PubMed DOI PMC

Lado S., Futas J., Plasil M., Loney T., Weidinger P., Camp J. V., et al. (2022). Crimean-Congo hemorrhagic fever virus past infections are associated with two innate immune response candidate genes in dromedaries. Cells 11 (1), 8. 10.3390/cells11010008 PubMed DOI PMC

Ming L., Wang Z., Yi L., Batmunkh M., Liu T., Siren D., et al. (2020b). Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 20, 770–780. 10.1111/1755-0998.13141 PubMed DOI

Ming L., Yuan L., Yi L., Ding G., Hasi S., Chen G., et al. (2020a). Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. Commun. Biol. 3, 1. 10.1038/s42003-019-0734-6 PubMed DOI PMC

Park S. D. E. (2001). The Excel microsatellite toolkit (version 3.1. Dublin, Ireland: Animal Genomics Laboratory, University College.

Plasil M., Wijkmark S., Elbers J. P., Oppelt J., Burger P. A., Horin P. (2019a). The major histocompatibility complex of Old World camelids: Class I and class I-related genes. HLA 93, 203–215. 10.1111/tan.13510 PubMed DOI

Plasil M., Wijkmark S., Elbers J. P., Oppelt J., Burger P. A., Horin P. (2019b). The major histocompatibility complex of Old World camels-A synopsis. Cells 8 (10), 1200. 10.3390/cells8101200 PubMed DOI PMC

Shiina T., Hosomichi K., Inoko H., Kulski J. K. (2009). The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 54 (1), 15–39. 10.1038/jhg.2008.5 PubMed DOI

Sommer S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front. Zool. 2, 16. 10.1186/1742-9994-2-16 PubMed DOI PMC

Traherne J. A. (2008). Human MHC architecture and evolution: Implications for disease association studies. Int. J. Immunogenet. 35 (3), 179–192. 10.1111/j.1744-313X.2008.00765.x PubMed DOI PMC

Wu H., Guang X., Al-Fageeh M. B., Cao J., Pan S., Zhou H., et al. (2014). Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 5, 5188. 10.1038/ncomms6188 PubMed DOI

Yuhki N., O'Brien S. J. (1990). DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. Proc. Natl. Acad. Sci. U. S. A. 87 (2), 836–840. 10.1073/pnas.87.2.836 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...