Innate and Adaptive Immune Genes Associated with MERS-CoV Infection in Dromedaries

. 2021 May 23 ; 10 (6) : . [epub] 20210523

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34070971

Grantová podpora
P 29623 Austrian Science Fund FWF - Austria
MBRU-CM-RG2019-13 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
P29623-B25 Austrian Science Funds (FWF)
MBRU-CM-RG2018-14 College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.

Zobrazit více v PubMed

Costagliola A., Liguori G., D’angelo D., Costa C., Ciani F., Giordano A. Do animals play a role in the transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)? a commentary. Animals. 2021;11:16. doi: 10.3390/ani11010016. PubMed DOI PMC

Zaki A.M., Van Boheemen S., Bestebroer T.M., Osterhaus A.D.M.E., Fouchier R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721. PubMed DOI

Hijawi B., Abdallat M., Sayaydeh A., Alqasrawi S., Haddadin A., Jaarour N., Alsheikh S., Alsanouri T. Novel coronavirus infections in Jordan, April 2012: Epidemiological findings from a retrospective investigation. East. Mediterr. Health J. 2013;19(Suppl. 1):12–18. doi: 10.26719/2013.19.supp1.S12. PubMed DOI

Reusken C.B.E.M., Haagmans B.L., Müller M.A., Gutierrez C., Godeke G.J., Meyer B., Muth D., Raj V.S., De Vries L.S., Corman V.M., et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: A comparative serological study. Lancet Infect. Dis. 2013;13:859–866. doi: 10.1016/S1473-3099(13)70164-6. PubMed DOI PMC

Nowotny N., Kolodziejek J. Middle East Respiratory Syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. Eurosurveillance. 2014;19:1–5. doi: 10.2807/1560-7917.ES2014.19.16.20781. PubMed DOI

Dawson P., Malik M.R., Parvez F., Morse S.S. What Have We Learned about Middle East Respiratory Syndrome Coronavirus Emergence in Humans? A Systematic Literature Review. Vector Borne Zoonotic Dis. 2019;19:174–192. doi: 10.1089/vbz.2017.2191. PubMed DOI PMC

Gossner C., Danielson N., Gervelmeyer A., Berthe F., Faye B., Kaasik Aaslav K., Adlhoch C., Zeller H., Penttinen P., Coulombier D. Human-Dromedary Camel Interactions and the Risk of Acquiring Zoonotic Middle East Respiratory Syndrome Coronavirus Infection. Zoonoses Public Health. 2016;63:1–9. doi: 10.1111/zph.12171. PubMed DOI PMC

Omrani A.S., Shalhoub S. Middle East respiratory syndrome coronavirus (MERS-CoV): What lessons can we learn? J. Hosp. Infect. 2015;91:188–196. doi: 10.1016/j.jhin.2015.08.002. PubMed DOI PMC

Hemida M.G., Elmoslemany A., Al-Hizab F., Alnaeem A., Almathen F., Faye B., Chu D.K.W., Perera R.A.P.M., Peiris M. Dromedary Camels and the Transmission of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Transbound. Emerg. Dis. 2017;64:344–353. doi: 10.1111/tbed.12401. PubMed DOI PMC

Assiri A., McGeer A., Perl T.M., Price C.S., Al Rabeeah A.A., Cummings D.A.T., Alabdullatif Z.N., Assad M., Almulhim A., Makhdoom H., et al. Hospital outbreak of middle east respiratory syndrome coronavirus. N. Engl. J. Med. 2013;369:407–416. doi: 10.1056/NEJMoa1306742. PubMed DOI PMC

Corman V.M., Jores J., Meyer B., Younan M., Liljander A., Said M.Y., Gluecks I., Lattwein E., Bosch B.J., Drexler J.F., et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013. Emerg. Infect. Dis. 2014;20:1319–1322. doi: 10.3201/eid2008.140596. PubMed DOI PMC

Lau S.K.P., Li K.S.M., Luk H.K.H., He Z., Teng J.L.L., Yuen K.-Y., Wernery U., Woo P.C.Y. Middle East Respiratory Syndrome Coronavirus Antibodies in Bactrian and Hybrid Camels from Dubai. mSphere. 2020;5:e00898-19. doi: 10.1128/mSphere.00898-19. PubMed DOI PMC

Reusken C.B.E.M., Schilp C., Raj V.S., De Bruin E., Kohl R.H.G., Farag E.A.B.A., Haagmans B.L., Al-Romaihi H., Le Grange F., Bosch B.J., et al. MERS-CoV infection of alpaca in a region where MERS-CoV is endemic. Emerg. Infect. Dis. 2016;22:1129–1131. doi: 10.3201/eid2206.152113. PubMed DOI PMC

Ciccarese S., Burger P.A., Ciani E., Castelli V., Linguiti G., Plasil M., Massari S., Horin P., Antonacci R. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front. Genet. 2019;10:997. doi: 10.3389/fgene.2019.00997. PubMed DOI PMC

Muyldermans S., Baral T.N., Retamozzo V.C., De Baetselier P., De Genst E., Kinne J., Leonhardt H., Magez S., Nguyen V.K., Revets H., et al. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 2009;128:178–183. doi: 10.1016/j.vetimm.2008.10.299. PubMed DOI

Ming L., Wang Z., Yi L., Batmunkh M., Liu T., Siren D., He J., Juramt N., Jambl T., Li Y., et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol. Ecol. Resour. 2020;20:770–780. doi: 10.1111/1755-0998.13141. PubMed DOI

Jovčevska I., Muyldermans S. The Therapeutic Potential of Nanobodies. BioDrugs. 2020;34:11–26. doi: 10.1007/s40259-019-00392-z. PubMed DOI PMC

Hanke L., Perez L.V.D.J.S., Das H., Schulte T., Morro A.M., Corcoran M., Achour A., Hedestam G.K., Hällberg B.M., Murrell B., et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat. Commun. 2020;11:4420. doi: 10.1038/s41467-020-18174-5. PubMed DOI PMC

Wrapp D., De Vlieger D., Corbett K.S., Torres G.M., Wang N., Van Breedam W., Roose K., van Schie L., Hoffmann M., Pöhlmann S., et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell. 2020;181:1004–1015.e15. doi: 10.1016/j.cell.2020.04.031. PubMed DOI PMC

Koenig P.-A., Das H., Liu H., Kümmerer B.M., Gohr F.N., Jenster L.-M., Schiffelers L.D.J., Tesfamariam Y.M., Uchima M., Wuerth J.D., et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science. 2021;371:eabe6230. doi: 10.1126/science.abe6230. PubMed DOI PMC

Chu D.K.W., Hui K.P.Y., Perera R.A.P.M., Miguel E., Niemeyer D., Zhao J., Channappanavar R., Dudas G., Oladipo J.O., Traoré A., et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc. Natl. Acad. Sci. USA. 2018;115:3144–3149. doi: 10.1073/pnas.1718769115. PubMed DOI PMC

Adney D.R., Clancy C.S., Bowen R.A., Munster V.J. Camelid Inoculation with Middle East Respiratory Syndrome Coronavirus: Experimental Models of Reservoir Host Infection. Viruses. 2020;12:1370. doi: 10.3390/v12121370. PubMed DOI PMC

Elbers J.P., Rogers M.F., Perelman P.L., Proskuryakova A.A., Serdyukova N.A., Johnson W.E., Horin P., Corander J., Murphy D., Burger P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019;19:1015–1026. doi: 10.1111/1755-0998.13020. PubMed DOI PMC

Lado S., Elbers J.P., Rogers M.F., Melo-Ferreira J., Yadamsuren A., Corander J., Horin P., Burger P.A. Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genom. 2020;21:606. doi: 10.1186/s12864-020-06990-4. PubMed DOI PMC

Pedersen A.B., Babayan S.A. Wild immunology. Mol. Ecol. 2011;20:872–880. doi: 10.1111/j.1365-294X.2010.04938.x. PubMed DOI

Fitak R.R., Mohandesan E., Corander J., Yadamsuren A., Chuluunbat B., Abdelhadi O., Raziq A., Nagy P., Walzer C., Faye B., et al. Genomic signatures of domestication in Old World. Commun. Biol. 2020;3:316. doi: 10.1038/s42003-020-1039-5. PubMed DOI PMC

Guo F., Ming L., Si R., Yi L., He J., Ji R. A genome-wide association study identifies quantitative trait loci affecting hematological traits in camelus bactrianus. Animals. 2020;10:96. doi: 10.3390/ani10010096. PubMed DOI PMC

Bahbahani H., Musa H.H., Wragg D., Shuiep E.S., Almathen F., Hanotte O. Genome Diversity and Signatures of Selection for Production and Performance Traits in Dromedary Camels. Front. Genet. 2019;10:893. doi: 10.3389/fgene.2019.00893. PubMed DOI PMC

Plasil M., Mohandesan E., Fitak R.R., Musilova P., Kubickova S., Burger P.A., Horin P. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genom. 2016;17:117. doi: 10.1186/s12864-016-2500-1. PubMed DOI PMC

Plasil M., Wijkmark S., Elbers J.P., Oppelt J., Burger P.A., Horin P. The major histocompatibility complex of Old World camelids: Class I and class I-related genes. Hla. 2019;93:203–215. doi: 10.1111/tan.13510. PubMed DOI

Futas J., Oppelt J., Jelinek A., Elbers J.P., Wijacki J., Knoll A., Burger P.A., Horin P. Natural killer cell receptor genes in camels: Another mammalian model. Front. Genet. 2019;10:620. doi: 10.3389/fgene.2019.00620. PubMed DOI PMC

Elbers J.P., Brown M.B., Taylor S.S. Identifying genome-wide immune gene variation underlying infectious disease in wildlife populations—A next generation sequencing approach in the gopher tortoise. BMC Genom. 2018;19:64. doi: 10.1186/s12864-018-4452-0. PubMed DOI PMC

Yu F., Zhang X., Tian S., Geng L., Xu W., Ma N., Wang M., Jia Y., Liu X., Ma J., et al. Comprehensive investigation of cytokine- and immune-related gene variants in HBV-associated hepatocellular carcinoma patients. Biosci. Rep. 2017;37 doi: 10.1042/BSR20171263. PubMed DOI PMC

Griffin G.K., Sholl L.M., Lindeman N.I., Fletcher C.D.M., Hornick J.L. Targeted genomic sequencing of follicular dendritic cell sarcoma reveals recurrent alterations in NF-κB regulatory genes. Mod. Pathol. 2016;29:67–74. doi: 10.1038/modpathol.2015.130. PubMed DOI

Corman V.M., Müller M.A., Costabel U., Timm J., Binger T., Meyer B., Kreher P., Lattwein E., Eschbach-Bludau M., Nitsche A., et al. Assays for laboratory confirmation of novel human coronavirus (HCOV-EMC) infections. Eurosurveillance. 2012;17:1–9. doi: 10.2807/ese.17.49.20334-en. PubMed DOI

De Volo S.B., Reynolds R.T., Douglas M.R., Antolin M.F. An improved extraction method to increase DNA yield from molted feathers. Condor. 2008;110:762–766. doi: 10.1525/cond.2008.8586. DOI

Quinlan A.R., Hall I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Davies R.W., Flint J., Myers S., Mott R. Rapid genotype imputation from sequence without reference panels. Nat. Genet. 2016;48:965–969. doi: 10.1038/ng.3594. PubMed DOI PMC

Lindenbaum P. JVarkit: Java-based utilities for Bioinformatics. FigShare. 2015;10:m9.

Purcell S., Neale B., Todd-brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., De Bakker P.I.W., Daly M.J., et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Gremme G., Steinbiss S., Kurtz S. Genome tools: A comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2013;10:645–656. doi: 10.1109/TCBB.2013.68. PubMed DOI

Goudet J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes. 2005;5:184–186. doi: 10.1111/j.1471-8286.2004.00828.x. DOI

Fox J., Weisberg S. An R Companion to Applied Regression. 3rd ed. Sage Publications Inc.; New York, NY, USA: 2019.

Hothorn T., Bretz F., Westfall P. Simultaneous Inference in General Parametric Models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Turner S.D. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. J. Open Source Softw. 2018;3:731. doi: 10.21105/joss.00731. DOI

Yin T., Cook D., Lawrence M. ggbio: An R package for extending the grammar of graphics for genomic data. Genome Biol. 2012;13:R77. doi: 10.1186/gb-2012-13-8-r77. PubMed DOI PMC

Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–1188. doi: 10.1214/aos/1013699998. DOI

Narum S.R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 2006;7:783–787. doi: 10.1007/s10592-005-9056-y. DOI

Purcell S., Cherny S.S., Sham P.C. Genetic power calculator: Design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19:149–150. doi: 10.1093/bioinformatics/19.1.149. PubMed DOI

VanRaden P.M., Sun C., O’Connell J.R. Fast imputation using medium or low-coverage sequence data. BMC Genet. 2015;16:82. doi: 10.1186/s12863-015-0243-7. PubMed DOI PMC

Engering A., Hogerwerf L., Slingenbergh J. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2013;2:1–7. doi: 10.1038/emi.2013.5. PubMed DOI PMC

Alagaili A.N., Briese T., Mishra N., Kapoor V., Sameroff S.C., de Wit E., Munster V.J., Hensley L.E., Zalmout I.S., Kapoor A., et al. Middle east respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5 doi: 10.1128/mBio.01002-14. PubMed DOI PMC

Adney D.R., van Doremalen N., Brown V.R., Bushmaker T., Scott D., de Wit E., Bowen R.A., Munster V.J. Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg. Infect. Dis. 2014;20:1999–2005. doi: 10.3201/eid2012.141280. PubMed DOI PMC

Zhu S., Zimmerman D., Deem S.L. A Review of Zoonotic Pathogens of Dromedary Camels. Ecohealth. 2019;16:356–377. doi: 10.1007/s10393-019-01413-7. PubMed DOI PMC

Mohd H.A., Al-Tawfiq J.A., Memish Z.A. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir. Virol. J. 2016;13:1–7. doi: 10.1186/s12985-016-0544-0. PubMed DOI PMC

Shelton J.F., Shastri A.J., Ye C., Weldon C.H., Filshtein- T., Coker D., Symons A., Esparza-gordillo J., The 23andMe COVID-19 Team. Aslibekyan S., et al. Trans-ethnic analysis reveals genetic and non-genetic associations with COVID-19 susceptibility and severity. medRxiv. 2020 doi: 10.1101/2020.09.04.20188318. PubMed DOI

Ovsyannikova I.G., Haralambieva I.H., Crooke S.N., Poland G.A., Kennedy R.B. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol. Rev. 2020;296:205–219. doi: 10.1111/imr.12897. PubMed DOI PMC

Hajeer A.H., Balkhy H., Johani S., Yousef M.Z., Arabi Y. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection. Ann. Thorac. Med. 2016;11:211–213. doi: 10.4103/1817-1737.185756. PubMed DOI PMC

Harton J., Jin L., Hahn A., Drake J. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules. F1000Research. 2016;5 doi: 10.12688/f1000research.7610.1. PubMed DOI PMC

Cooper D.N. Guest Editorial Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Hum. Genom. 2010;4:284–288. doi: 10.1186/1479-7364-4-5-284. PubMed DOI PMC

Huai W., Song H., Wang L., Li B., Zhao J., Han L., Gao C., Jiang G., Zhang L., Zhao W. Phosphatase PTPN4 Preferentially Inhibits TRIF-Dependent TLR4 Pathway by Dephosphorylating TRAM. J. Immunol. 2015;194:4458–4465. doi: 10.4049/jimmunol.1402183. PubMed DOI

Brandao S.C.S., Ramos J.d.O.X., Dompieri L.T., Godoi E.T.A.M., Figueiredo J.L., Sarinho E.S.C., Chelvanambi S., Aikawa M. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev. 2020;5:135–143. doi: 10.1016/j.cytogfr.2020.09.002. PubMed DOI PMC

Mubarak A., Alturaiki W., Hemida M.G. Middle east respiratory syndrome coronavirus (MERS-CoV): Infection, immunological response, and vaccine development. J. Immunol. Res. 2019;2019:6491738. doi: 10.1155/2019/6491738. PubMed DOI PMC

Haddad H., Al-Zyoud W. miRNA target prediction might explain the reduced transmission of SARS-CoV-2 in Jordan, Middle East. Non Coding RNA Res. 2020;5:135–143. doi: 10.1016/j.ncrna.2020.08.002. PubMed DOI PMC

Zhang Y.J., O’Neal W.K., Randell S.H., Blackburn K., Moyer M.B., Boucher R.C., Ostrowski L.E. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J. Biol. Chem. 2002;277:17906–17915. doi: 10.1074/jbc.M200348200. PubMed DOI

Nunnari G., Sanfilippo C., Castrogiovanni P., Imbesi R., Li Volti G., Barbagallo I., Musumeci G., Di Rosa M. Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection. Exp. Cell Res. 2020;395:112204. doi: 10.1016/j.yexcr.2020.112204. PubMed DOI PMC

Tao X., Hill T.E., Morimoto C., Peters C.J., Ksiazek T.G., Tseng C.-T.K. Bilateral Entry and Release of Middle East Respiratory Syndrome Coronavirus Induces Profound Apoptosis of Human Bronchial Epithelial Cells. J. Virol. 2013;87:9953–9958. doi: 10.1128/JVI.01562-13. PubMed DOI PMC

Yuen K.M., Chan R.W., Mok C.K., Wong A.C., Kang S.S., Nicholls J.M., Chan M.C. Differential onset of apoptosis in avian influenza H5N1 and seasonal H1N1 virus infected human bronchial and alveolar epithelial cells: An in vitro and ex vivo study. Influenza Other Respir. Viruses. 2011;5:437–438. PubMed PMC

Dendrou C.A., Petersen J., Rossjohn J., Fugger L. HLA variation and disease. Nat. Rev. Immunol. 2018;18:325–339. doi: 10.1038/nri.2017.143. PubMed DOI

Wang S.F., Chen K.H., Chen M., Li W.Y., Chen Y.J., Tsao C.H., Yen M.Y., Huang J.C., Chen Y.M.A. Human-Leukocyte Antigen Class I Cw 1502 and Class II DR 0301 Genotypes Are Associated with Resistance to Severe Acute Respiratory Syndrome (SARS) Infection Sheng-Fan. Viral Immunol. 2011;24:421–426. doi: 10.1089/vim.2011.0024. PubMed DOI

Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020;10:102–108. doi: 10.1016/j.jpha.2020.03.001. PubMed DOI PMC

Warren R.L., Birol I. HLA Predictions from the Bronchoalveolar Lavage Fluid Samples of Five Patients at the Early Stage of the Wuhan Seafood Market COVID-19 Outbreak. Bioinformatics. 2020;36:5271–5273. doi: 10.1093/bioinformatics/btaa756. PubMed DOI PMC

Park J.H., Gail M.H., Weinberg C.R., Carroll R.J., Chung C.C., Wang Z., Chanock S.J., Fraumeni J.F., Chatterjee N. Distribution of allele frequencies and effect sizes and their interrelationships for common genetic susceptibility variants. Proc. Natl. Acad. Sci. USA. 2011;108:18026–18031. doi: 10.1073/pnas.1114759108. PubMed DOI PMC

Liu J., Wu P., Gao F., Qi J., Kawana-Tachikawa A., Xie J., Vavricka C.J., Iwamoto A., Li T., Gao G.F. Novel Immunodominant Peptide Presentation Strategy: A Featured HLA-A*2402-Restricted Cytotoxic T-Lymphocyte Epitope Stabilized by Intrachain Hydrogen Bonds from Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein. J. Virol. 2010;84:11849–11857. doi: 10.1128/JVI.01464-10. PubMed DOI PMC

Novelli A., Andreani M., Biancolella M., Liberatoscioli L., Passarelli C., Colona V.L., Rogliani P., Leonardis F., Campana A., Carsetti R., et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. Hla. 2020;96:610–614. doi: 10.1111/tan.14047. PubMed DOI PMC

Singh K.K., Wachsmuth L., Kulozik A.E., Gehring N.H. Two mammalian MAGOH genes contribute to exon junction complex composition and nonsense-mediated decay. RNA Biol. 2013;10:1291–1298. doi: 10.4161/rna.25827. PubMed DOI PMC

McAleer J.P., Vella A.T. Understanding how lipopolysaccharide impacts CD4 T-cell immunity. Crit. Rev. Immunol. 2008;28:281–299. PubMed PMC

Zhu Z., Qi Y., Ge A., Zhu Y., Xu K., Ji H., Shi Z., Cui L., Zhou M. Comprehensive characterization of serum microRNA profile in response to the emerging avian influenza A (H7N9) virus infection in humans. Viruses. 2014;6:1525–1539. doi: 10.3390/v6041525. PubMed DOI PMC

Leon-Icaza S.A., Zeng M., Rosas-Taraco A.G. microRNAs in viral acute respiratory infections: Immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1:1. doi: 10.1186/s41544-018-0004-7. PubMed DOI PMC

Sardar R., Satish D., Gupta D. Identification of Novel SARS-CoV-2 Drug Targets by Host MicroRNAs and Transcription Factors Co-regulatory Interaction Network Analysis. Front. Genet. 2020;11:1–9. doi: 10.3389/fgene.2020.571274. PubMed DOI PMC

Hoober J.K., Eggink L.L., Cote R. Stories from the Dendritic Cell Guardhouse. Front. Immunol. 2019;10:2880. doi: 10.3389/fimmu.2019.02880. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace