Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 29623
Austrian Science Fund FWF - Austria
P29623-B25
Austrian Science Fund
CEECIND/00372/2018
Fundação para a Ciência e a Tecnologia
PubMed
32883205
PubMed Central
PMC7468183
DOI
10.1186/s12864-020-06990-4
PII: 10.1186/s12864-020-06990-4
Knihovny.cz E-zdroje
- Klíčová slova
- Chromosome conformation capture, Chromosome mapping, Dromedary, Genetic diversity, Genome annotation, Genome assembly, Immune response genes, Scaffolding,
- MeSH
- anotace sekvence MeSH
- imunoproteiny genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kontigové mapování MeSH
- lokus kvantitativního znaku MeSH
- velbloudi genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- imunoproteiny MeSH
BACKGROUND: Immune-response (IR) genes have an important role in the defense against highly variable pathogens, and therefore, diversity in these genomic regions is essential for species' survival and adaptation. Although current genome assemblies from Old World camelids are very useful for investigating genome-wide diversity, demography and population structure, they have inconsistencies and gaps that limit analyses at local genomic scales. Improved and more accurate genome assemblies and annotations are needed to study complex genomic regions like adaptive and innate IR genes. RESULTS: In this work, we improved the genome assemblies of the three Old World camel species - domestic dromedary and Bactrian camel, and the two-humped wild camel - via different computational methods. The newly annotated dromedary genome assembly CamDro3 served as reference to scaffold the NCBI RefSeq genomes of domestic Bactrian and wild camels. These upgraded assemblies were then used to assess nucleotide diversity of IR genes within and between species, and to compare the diversity found in immune genes and the rest of the genes in the genome. We detected differences in the nucleotide diversity among the three Old World camelid species and between IR gene groups, i.e., innate versus adaptive. Among the three species, domestic Bactrian camels showed the highest mean nucleotide diversity. Among the functionally different IR gene groups, the highest mean nucleotide diversity was observed in the major histocompatibility complex. CONCLUSIONS: The new camel genome assemblies were greatly improved in terms of contiguity and increased size with fewer scaffolds, which is of general value for the scientific community. This allowed us to perform in-depth studies on genetic diversity in immunity-related regions of the genome. Our results suggest that differences of diversity across classes of genes appear compatible with a combined role of population history and differential exposures to pathogens, and consequent different selective pressures.
Ceitec VFU RG Animal Immunogenomics Brno Czech Republic
Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
Department of Animal Genetics Veterinary and Pharmaceutical University Brno Czech Republic
Department of Biostatistics University of Oslo N 0317 Oslo Norway
Intelligent Systems Laboratory University of Bristol Bristol UK
Wellcome Sanger Institute Hinxton UK
Wild Camel Protection Foundation Mongolia Jukov avenue Bayanzurh District Ulaanbaatar 13343 Mongolia
Zobrazit více v PubMed
Van Houte S, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, Bondy-denomy J, et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature. 2016;532:385. PubMed PMC
Ramey HR, Decker JE, McKay SD, et al. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics. 2013;14:382. PubMed PMC
Horrocks NPC, Matson KD, Tieleman BI. Pathogen pressure puts immune defense into perspective. Integr Comp Biol. 2011;51:563–576. PubMed
Plasil M, Mohandesan E, Fitak RR, Musilova P, Kubickova S, Burger PA, et al. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics. 2016;17:167. doi: 10.1186/s12864-016-2500-1. PubMed DOI PMC
Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet. 2013;14:301–323. PubMed PMC
Jepson A, Banya W, Sisay-Joof F, Hassan-King M, Nunes C, Bennett S, et al. Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect Immun. 1997;65:872–876. PubMed PMC
Acevedo-Whitehouse K, Cunningham AA. Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol. 2006;21:433–438. PubMed
Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly and annotation of a female domestic dromedary of north African origin. Mol Ecol Resour. 2016;16:314–324. PubMed PMC
Jirimutu Wang Z, et al. Genome sequences of wild and domestic bactrian camels Nat Commun. 2012;3:1202. PubMed PMC
Wu H, Guang X, Al-Fageeh MB, et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun. 2014;5:5188. PubMed
Elbers JP, Rogers MF, Perelman PL, Proskuryakova AA, Serdyukova NA, Johnson WE, et al. Improving Illumina assemblies with hi-C and long reads: an example with the north African dromedary. Mol Ecol Resour. 2019;19:1015–1026. PubMed PMC
Ming L, Wang Z, Yi L, Batmunkh M, Liu T, Siren D, et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol Ecol Resour. 2020;00:1–11. PubMed
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. PubMed
Holt, C., Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 2011;12(491). PubMed PMC
Yandell M, Ence D. A beginner’s guide to eukaryotic genome annotation. Nat Rev Genet. 2012;13:329–342. doi: 10.1038/nrg3174. PubMed DOI
Kolmogorov M, Raney B, Paten B, Pham S. Ragout - a reference-assisted assembly tool for bacterial genomes. Bioinformatics. 2014;30:i302–i309. PubMed PMC
Paten B, Diekhans M, Earl D, John JS, Ma J, Suh B, et al. Cactus graphs for genome comparisons. J Comput Biol. 2011;18:469–481. PubMed PMC
Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13:R56. PubMed PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed
Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, Ioannidis P, et al. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res. 2017;45:D744–D749. PubMed PMC
Fitak RR, Mohandesan E, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi O, et al. Genomic signatures of domestication in Old World. Commun Biol. 2020;3:1–10. doi: 10.1038/s42003-020-1039-5. PubMed DOI PMC
Avila F, Baily MP, Perelman P, Das PJ, Pontius J, Chowdhary R, et al. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos) Cytogenet Genome Res. 2014;144:196–207. PubMed
Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178–183. doi: 10.1016/j.vetimm.2008.10.299. PubMed DOI
Antonacci R, Linguiti G, Burger PA, Castelli V, Pala A, Fitak R, et al. Comprehensive genomic analysis of the dromedary T cell receptor gamma (TRG) locus and identification of a functional TRGC5 cassette. Dev Comp Immunol. 2020;106:103614. PubMed
Futas J, Oppelt J, Jelinek A, Elbers JP, Wijacki J, Knoll A, et al. Natural killer cell receptor genes in camels: Another mammalian model. Front Genet. 2019;10 JUL:1–15. PubMed PMC
Vaccarelli G, Antonacci R, Tasco G, Yang F, Giordano L, El Ashmaoui HM, et al. Generation of diversity by somatic mutation in the Camelus dromedarius T-cell receptor gamma variable domains. Eur J Immunol. 2012;42:3416–3428. PubMed
Abbas B, Omer OH. Review of infectious diseases of the camel. Vet Bull. 2005;75:1–16.
Wernery U, Kinne J. Foot and mouth disease and similar virus infections in camelids: a review. Rev Sci Tech - Off Int des épizooties. 2012;31:907–918. PubMed
Hemida MG, Chu DKW, Poon LLM, Perera RAPM, Alhammadi MA, Ng HY, et al. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis. 2014;20:1231–1234. PubMed PMC
Kurtz J, Kalbe M, Aeschlimann PB, Häberli MA, Wegner KM, Reusch TBH, et al. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc B Biol Sci. 2004;271:197–204. PubMed PMC
Uematsu S, Akira S. Toll-like receptors (TLRs) and their ligands. In: Bauer S, Hartmann G, editors. Toll-like receptors (TLRs) and innate immunity. Springer: Berlin Heidelberg; 2008. pp. 1–20.
Gnerre S, Lander ES, Lindblad-toh K, Jaffe DB. Assisted assembly: how to improve a de novo genome assembly by using related species. Genome Biol. 2009;10:R88. PubMed PMC
Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P, Pitt D, et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci. 2016;113:6707–6712. doi: 10.1073/pnas.1519508113. PubMed DOI PMC
Yadamsuren A, Dulamtseren E, Reading RP. The conservation status and Management of Wild Camels in Mongolia. In: Knoll E-M, Burger PA, editors. Camels in Asia and North-Africa- interdisciplinary perspectives on their past and present significance. Austrian Academy of Sciences Press: Wien; 2012. pp. 45–54.
Dirie MF, Abdurahman O. Observations on little known diseases of camels (Camelus dromedarius) in the horn of Africa. Rev Sci Tech - Off Int des épizooties. 2003;22:1043–1049. PubMed
Fassi-Fehri MM. Diseases of camels. Rev Sci Tech Off Int des Epizoot. 1987;6:337–354.
Bontrop RE, Otting N, de Groot NG, Gaby G. M D. Major histocompatibility complex class II polymorphisms in primates. Syst Lupus Erythematosus. 1999;167:339–350. PubMed
Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–377. PubMed
Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease. 5th editio. New York: Garland Science; 2001.
Ujvari B, Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int J Mol Sci. 2011;12:5168–5186. PubMed PMC
Elbers JP, Clostio RW, Taylor SS. Neutral genetic processes influence MHC evolution in threatened gopher tortoises (Gopherus polyphemus) J Hered. 2017;108:515–523. PubMed
Ming L, Yi L, Sa R, Wang ZX, Wang Z, Ji R. Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations. Anim Genet. 2017;48:217–220. PubMed PMC
Ming L, Yuan L, Yi L, Ding G, Hasi S, Chen G, et al. Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. Commun Biol. 2020;3:1–9. PubMed PMC
Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HI. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob Chang Biol. 2018;24:3254–3265. PubMed
Lado S, Elbers JP, Doskocil A, Scaglione D, Trucchi E, Banabazi MH, et al. Genome-wide diversity and global migration patterns in dromedaries follow ancient caravan routes. Commun Biol. 2020;3:1–8. doi: 10.1038/s42003-020-1098-7. PubMed DOI PMC
Richardson MF, Munyard K, Croft LJ, Allnutt TR, Jackling F, Alshanbari F, et al. Chromosome-level alpaca reference genome VicPac3.1 improves genomic insight into the biology of new world camelids. Front Genet. 2019;10:1–15. PubMed PMC
Plasil M, Wijkmark S, Elbers JP, Oppelt J, Burger PA, Horin P. The major histocompatibility complex of Old World camelids: class I and class I-related genes. Hla. 2019;93:203–215. PubMed
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. PubMed PMC
Putnam NH, Connell BO, Stites JC, Rice BJ, Blanchette M, Calef R, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–350. PubMed PMC
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS ONE. 2012;7(11):e47768. PubMed PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. PubMed PMC
Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter effect of bloom filter false positive rate. Genome Res. 2017;27:768–777. PubMed PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements Daehwan HHS public access. Nat Methods. 2015;12:357–360. PubMed PMC
Alim FZD, Romanova EV, Tay Y-L, Rahman AYBA, Chan KG, Hong KW, et al. Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS One. 2019;14:1–33. PubMed PMC
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–2034. PubMed PMC
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–196. PubMed PMC
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–6506. PubMed PMC
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–295. PubMed PMC
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Web Server Issue):W435–W439. PubMed PMC
Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view. Methods Mol Biol. 2016;1374:23–54. doi: 10.1007/978-1-4939-3167-5. PubMed DOI
Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE, et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 2014;164:513–524. PubMed PMC
Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol. 2019;37:124–126. PubMed
Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 2011;21:1512–1528. PubMed PMC
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–467. PubMed
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. PubMed PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. PubMed PMC
Cabanettes F, Klopp C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ. 2018;2018(6):e4958. PubMed PMC
Kofler R, Orozco-terWengel P, de Maio N, Pandey RV, Nolte V, Futschik A, et al. Popoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One. 2011;6:e15925. PubMed PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN]; 2013.
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin) 2012;6:80–92. PubMed PMC
Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34:867–868. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–363. PubMed
Gremme G, Steinbiss S, Kurtz S. Genome tools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinforma. 2013;10:645–656. PubMed
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. PubMed PMC
Venables WN, Ripley BD. Modern applied statistics with S. New York: Springer; 2002.
Pinheiro J, Bates D, DebRoy S, Sarkar D. nlme: linear and nonlinear mixed effects models. R package version 3.1–111. 2013.
Elbers JP, Taylor SS. GO2TR: a gene ontology-based workflow to generate target regions for target enrichment experiments. Conserv Genet Resour. 2015;7:851–857.
Bradley RK, Roberts A, Smoot M, et al. Fast statistical alignment. PLoS Comput Biol. 2009;5(5):e1000392. PubMed PMC
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:1–14. PubMed PMC
Paradis E. Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26:419–420. PubMed
Canty A, Ripley B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–24. 2019.
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, et al. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics. Front Genet. 2019;10(OCT):1–14. PubMed PMC
Hamer-Casterman C, Atarchouch T, Muyldermans S, Robinson G, Hamers C, Bajyana E, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–448. PubMed
Shumate A, Salzberg SL. Liftoff: an accurate gene annotation mapping tool. bioRxiv. 2020;2020.06.24.169680. 10.1101/2020.06.24.169680.