Bactrian camel
Dotaz
Zobrazit nápovědu
Equine piroplasmosis caused by Babesia caballi and Theileria equi is widespread in Asia. The presence of these haemozoans in Mongolia was previously confirmed in domestic as well as in reintroduced Przewalski horses in which they cause significant pathology. The data on occurrence of piroplasms from Bactrian camels in Asia is lacking. A total of 192 horses, 70 Bactrian camels, and additional 16 shepherd dogs from the Hentiy province were included in our study. No clinical signs typical for piroplasmid infection were observed during the field survey. Microscopic examination revealed the presence of T. equi in blood smears from 67% of examined horses, with camels and dogs being negative. A two step PCR approach was used to detect piroplasms in peripheral blood. In the first "catch all" PCR reaction, amplification of the 496 bp-long fragment of the SSU rRNA gene enabled the detection of Babesia and Theileria spp. Second round multiplex PCR reaction used for species discrimination allowed the amplification of T. equi- and B. caballi-specific 340 bp and 650 bp-long regions of the SSU rRNA, respectively. This assay detected T. equi in 92.7% of horses, while the infections with B. caballi and dual infections were rare. In both PCR setups, camels and dogs were negative indicating that in the studied region, these hosts do not share piroplasms with horses.
- MeSH
- babezióza epidemiologie parazitologie veterinární MeSH
- koně MeSH
- nemoci koní epidemiologie parazitologie MeSH
- nemoci psů epidemiologie parazitologie MeSH
- psi MeSH
- velbloudi MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Mongolsko MeSH
Allosuckling is a situation when a female nurses a non-filial offspring. It was described in various ungulate species; however for camels this is the first description of this behaviour. The aim of the study was to assess the occurrence of allosuckling in captive camels (Camelus bactrianus) and to test whether it can be explained as a 'milk-theft' (opportunistic behaviour of calves) or alternatively as an altruistic behaviour of females. During 2005 and 2007, nine camel females and ten calves in four zoological gardens in the Czech Republic were observed. In total, 373 sucking bouts were recorded, from which 32 were non-filial (the calf sucked from the non-maternal female). Allosuckling regularly appeared in captive camel herds. As predicted for the milk-theft explanation, the non-filial calves sucked more often in the lateral position and even did not suck in the antiparallel position at all. The non-filial calves preferably joined the filial calf when sucking but in five cases (15.6% of non-filial sucking bouts) the calves sucked from non-maternal dam without the presence of filial calf. We then expected the differences in terminations of sucking bouts by females but did not find any difference in sucking terminations for filial and non-filial calves. As the calves were getting older, the incidence of allosucking increased. This was probably because skills of the calf to outwit the non-maternal dam increased and/or the older calves might be more motivated for allosucking due to the weaning process. Finally, duration of a sucking bout was shorter with non-filial than filial calves. The results of the study support the hypothesis of 'milk theft', being mostly performed by calves behaving as opportunistic parasites, but we cannot reject certain level of altruism from the allonursing females or their increased degree of tolerance to non-filial calves.
- MeSH
- časové faktory MeSH
- kojená zvířata fyziologie MeSH
- mateřské chování fyziologie MeSH
- novorozená zvířata MeSH
- sací chování fyziologie MeSH
- skot fyziologie MeSH
- sociální chování MeSH
- stravovací zvyklosti fyziologie MeSH
- velbloudi fyziologie MeSH
- zvířata v ZOO fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- skot fyziologie MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acta physiologica Scandinavica ; Vol. 150 Supplementum 617
[1st ed.] 95 s. : bar. fot., obr., tab., grafy ; 24 cm
- MeSH
- metabolismus MeSH
- sporty MeSH
- svaly fyziologie MeSH
- tělesná námaha fyziologie MeSH
- velbloudi fyziologie MeSH
- Publikační typ
- sborníky MeSH
- Konspekt
- Fyziologie člověka a srovnávací fyziologie
- NLK Obory
- fyziologie
- MeSH
- porod MeSH
- velbloudi * MeSH
- zvířata v ZOO MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
This study aimed to isolate lactic acid bacteria (LABs) of technological interest from Moroccan camel milk and select starter or adjunct culture for dairy product manufacturing. The phenotypic and biochemical identification of 47 isolates revealed the existence of ten Lactococcus lactis, eleven Lactobacillus plantarum, three Lactobacillus brevis, two Lactobacillus paracasei, eleven Enterococcus spp., seven Lactococcus spp. and two Lactobacillus spp. Our strains showed a fast acidifying ability (ΔpH ranged between 0.69 ± 0.01 and 1.22 ± 0.05 after 6 h), high proteolytic and autolytic activities (1.93 ± 0.02 to 9.9 ± 0.022 mM glycine and 15.21 ± 2.21% to 83.24 ± 1% respectively), and an important lipolytic and free radical scavenging capacity. Furthermore, they were able to use citrate, to produce exopolysaccharide, and they exhibited antibacterial activity against Gram-negative and Gram-positive pathogenic bacteria and had no hemolytic activity. This study has shown that Moroccan camel milk represents a rich biotope of interesting LABs for dairy products industry.
BACKGROUND: The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. RESULTS: We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. CONCLUSION: This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully.
- MeSH
- klíšťata genetika metabolismus MeSH
- proteiny členovců genetika metabolismus MeSH
- proteom metabolismus MeSH
- proteomika MeSH
- slinné žlázy metabolismus MeSH
- sliny metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- velbloudi MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Rhipicephalus camicasi Morel, Mouchet et Rodhain, 1976 is thought to be distributed across Africa, Arabian Peninsula and the Mediterranean region. It belongs to the Rhipicephalus sanguineus (Latreille, 1806) species complex. Mitochondrial genome sequences are becoming frequently used for the identification and differentiation of tick species. In the present study, the entire mitochondrial genome of R. cf. camicasi (~15 kb) collected from a camel in Saudi Arabia was sequenced and compared with mitogenomes of two species of Rhipicephalus Koch, 1844. The mitochondrial genome is 87.8% and 91.7% identical to the reference genome of R. sanguineus (sensu stricto, former "temperate lineage") and Rhipicephalus linnaei (Audouin, 1826) (former "tropical lineage"). The current study delivers a molecular reference for material that resembles R. camicasi. We propose to consider the current material, including the complete mitogenome, as the reference for R. camicasi, until a revision using topotypical material is available.
- MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- nemoci psů * MeSH
- psi MeSH
- Rhipicephalus * genetika MeSH
- velbloudi genetika MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Saudská Arábie MeSH
BACKGROUND: Immune-response (IR) genes have an important role in the defense against highly variable pathogens, and therefore, diversity in these genomic regions is essential for species' survival and adaptation. Although current genome assemblies from Old World camelids are very useful for investigating genome-wide diversity, demography and population structure, they have inconsistencies and gaps that limit analyses at local genomic scales. Improved and more accurate genome assemblies and annotations are needed to study complex genomic regions like adaptive and innate IR genes. RESULTS: In this work, we improved the genome assemblies of the three Old World camel species - domestic dromedary and Bactrian camel, and the two-humped wild camel - via different computational methods. The newly annotated dromedary genome assembly CamDro3 served as reference to scaffold the NCBI RefSeq genomes of domestic Bactrian and wild camels. These upgraded assemblies were then used to assess nucleotide diversity of IR genes within and between species, and to compare the diversity found in immune genes and the rest of the genes in the genome. We detected differences in the nucleotide diversity among the three Old World camelid species and between IR gene groups, i.e., innate versus adaptive. Among the three species, domestic Bactrian camels showed the highest mean nucleotide diversity. Among the functionally different IR gene groups, the highest mean nucleotide diversity was observed in the major histocompatibility complex. CONCLUSIONS: The new camel genome assemblies were greatly improved in terms of contiguity and increased size with fewer scaffolds, which is of general value for the scientific community. This allowed us to perform in-depth studies on genetic diversity in immunity-related regions of the genome. Our results suggest that differences of diversity across classes of genes appear compatible with a combined role of population history and differential exposures to pathogens, and consequent different selective pressures.