Arginine-, D-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies

. 2015 Dec ; 44 (8) : 727-43. [epub] 20150820

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26290060
Odkazy

PubMed 26290060
PubMed Central PMC4628624
DOI 10.1007/s00249-015-1071-4
PII: 10.1007/s00249-015-1071-4
Knihovny.cz E-zdroje

We describe the synthesis, pharmacological properties, and structures of antidiuretic agonists, arginine vasopressin (AVP) and [D-Arg(8)]-vasopressin (DAVP), and their inverso analogues. The structures of the peptides are studied based on micellar and liposomic models of cell membranes using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic-zwitterionic micelles are obtained using NMR spectroscopy and molecular dynamics simulations. NMR data have shown that AVP and DAVP tend to adopt typical of vasopressin-like peptides β-turns: in the 2-5 and 3-6 fragments. The inverso-analogues also adopt β-turns in the 3-6 fragments. For this reason, their inactivity seems to be due to the difference in side chains orientations of Tyr(2), Phe(3), and Arg(8), important for interactions with the receptors. Again, the potent antidiuretic activity of DAVP can be explained by CD data suggesting differences in mutual arrangement of the aromatic side chains of Tyr(2) and Phe(3) in this peptide in liposomes rather than of native AVP. In the presence of liposomes, the smallest conformational changes of the peptides are noticed with DPPC and the largest with DPPG liposomes. This suggests that electrostatic interactions are crucial for the peptide-membrane interactions. We obtained similar, probably active, conformations of the antidiuretic agonists in the mixed DPC/SDS micelles (5:1) and in the mixed DPPC/DPPG (7:3) liposomes. Thus it can be speculated that the anionic-zwitterionic liposomes as well as the anionic-zwitterionic micelles, mimicking the eukaryotic cell membrane environment, partially restrict conformational freedom of the peptides and probably induce conformations resembling those of biologically relevant ones.

Zobrazit více v PubMed

Andersen NH, Neidigh JW, Harris SM, et al. Extracting information from the temperature gradients of polypeptide NH chemical shifts. 1. The importance of conformational averaging. J Am Chem Soc. 1997;119:8547–8561. doi: 10.1021/ja963250h. DOI

Barberis C, Mouillac B, Durroux T. Structural bases of vasopressin/oxytocin receptor function. J Endocrinol. 1998;156:223–229. doi: 10.1677/joe.0.1560223. PubMed DOI

Barlow M. Vasopressin. Emerg Med. 2002;14:304–314. doi: 10.1046/j.1442-2026.2002.00349_2.x. PubMed DOI

Bax A, Davis DG. MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson. 1985;65:355–360.

Bax A, Davis DG. Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn Reson. 1985;63:207–213.

Baxter NJ, Williamson MP. Temperature dependence of 1H chemical shifts in proteins. J Biomol NMR. 1997;9:359–369. doi: 10.1023/A:1018334207887. PubMed DOI

Beswick V, Guerois R, Cordier-Ochsenbein F, et al. Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis. Eur Biophys J. 1998;28:48–58. doi: 10.1007/s002490050182. PubMed DOI

Beswick V, Roux M, Navarre C, et al. 1H and 2H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H+-ATPase; conformational properties and lipid-peptide interactions. Biochimie. 1998;80:451–459. doi: 10.1016/S0300-9084(00)80012-7. PubMed DOI

Bothner-By AA, Stephens RL, Lee JM, et al. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. JACS. 1980;106:811–813. doi: 10.1021/ja00315a069. DOI

Brewster AI, Hruby VJ, Spatola AF, Bovey FA. Carbon-13 nuclear magnetic resonance spectroscopy of oxytocin, related oligopeptides, and selected analogs. Biochemistry (Mosc) 1973;12:1643–1649. doi: 10.1021/bi00732a028. PubMed DOI

Burn HJ, Finney DJ, Goodwin LG. Biological standardization. London: Oxford University Press; 1950.

Case DA, Darden TA, Cheatham TE, et al. AMBER 11. San Francisco: University of California; 2010.

Chen C, Tripp C. A comparison of the behavior of cholesterol, 7-dehydrocholesterol and ergosterol in phospholipid membranes. Biochim Biophys Acta. 2012;1818:1673–1681. doi: 10.1016/j.bbamem.2012.03.009. PubMed DOI

Christensen TC (1979) In: Gross E, Meienhofer J (eds) Peptides: structure and biological function. Pierce Chem. Corp, Rockford, pp 385–388

Corrêa DHA, Ramos CHI. The use of circular dichroism spectroscopy to study protein folding, form and function. J Biochem Res. 2009;3:164–173.

De Luca S, Ragone R, Bracco C, et al. A cyclic CCK8 analogue selective for the cholecystokinin type A receptor: design, synthesis, NMR structure and binding measurements. ChemBioChem. 2003;4:1176–1187. doi: 10.1002/cbic.200300635. PubMed DOI

Dekanski J. The quantitative assay of vasopressin. Br J Pharmacol. 1952;7:567–572. PubMed PMC

Dorman DE, Bovey FA. Carbon magnetic resonance spectroscopy. The spectrum of proline in oligopeptides. J Org Chem. 1973;38:2379–2383. doi: 10.1021/jo00953a021. DOI

Du Plessis J, Ramachandran C, Weiner N, Müller DG. The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage. Int J Pharm. 1996;127:273–278. doi: 10.1016/0378-5173(95)04281-4. DOI

Dyson HJ, Wright PE. Defining solution conformations of small peptides. Ann Rev Biophys Biochem Chem. 1991;20:519–538. doi: 10.1146/annurev.bb.20.060191.002511. PubMed DOI

Eberstadt M, Gemmecker G, Mierke DF, Kessler H. Scalar coupling constants—their analysis and their application for the elucidation of structures. Angew Hem Int Ed Engl. 1995;34:1671–1695. doi: 10.1002/anie.199516711. DOI

Ergun S, Demir P, Uzbay T, Severcan F. Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. Biochim Biophys Acta. 2014;1838:2798–2806. doi: 10.1016/j.bbamem.2014.07.025. PubMed DOI

Flouret G, Terada S, Kato T, et al. Synthesis of oxytocin using iodine for oxidative cyclization and silica gel adsorption chromatography for purification. Int J Pept Protein Res. 1979;13:137–141. doi: 10.1111/j.1399-3011.1979.tb01861.x. PubMed DOI

Fric I, Kodícek M, Flegel M, Zaoral M. Circular-dichroic spectra of vasopressin analogues and their cyclic fragments. Eur J Biochem. 1975;56:493–502. doi: 10.1111/j.1432-1033.1975.tb02255.x. PubMed DOI

Garidel P, Johann C, Mennicke L, Blume A. The mixing behavior of pseudobinary phosphatidylcholine–phosphatidylglycerol mixtures as a function of pH and chain length. Eur Biophys J. 1997;26:447–459. doi: 10.1007/s002490050099. DOI

Goddard TD, Kneller DG. SPARKY 3. San Francisco: University of California; 2008.

Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997;273:283–298. doi: 10.1006/jmbi.1997.1284. PubMed DOI

Hirsh DJ, Hammer J, Maloy WL, et al. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry (Mosc) 1996;35:12733–12741. doi: 10.1021/bi961468a. PubMed DOI

Hlavacek J (1987) In: Jost K, Lebl M, Brtnik F (eds) Handbook of neurohypophyseal hormone analogs. CRC Press Inc., Boca Raton, Florida

Holton P. A modification of the method of Dale and Laidlaw for standardization of posterior pituitary extract. Br J Pharmacol Chemother. 1948;3:328–334. doi: 10.1111/j.1476-5381.1948.tb00396.x. PubMed DOI PMC

Hruby VJ, Brewster AI, Glasel JA. NMR studies on the conformation of derivatives of the side chain of oxytocin: examples of cis–trans isomerism. Proc Natl Acad Sci. 1971;68:450–453. doi: 10.1073/pnas.68.2.450. PubMed DOI PMC

Hruby VJ, Upson DA, Yamamoto DM, et al. Active site studies of neurohyphophyseal hormones. Comparison of oxytocin and arginine vasopressin analogues containing 2-d-tyrosine. J Am Chem Soc. 1979;101:2717–2721. doi: 10.1021/ja00504a037. DOI

Hruby VJ, Mosberg H, Fox J, Tu A. Conformational comparisons of oxytocin agonists, partial agonists, and antagonists using laser Raman and circular dichroism spectroscopy. J Biol Chem. 1982;257:4916–4924. PubMed

Insel TR, O’Brien DJ, Leckman JF. Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry. 1999;45:145–157. doi: 10.1016/S0006-3223(98)00142-5. PubMed DOI

Jard S, Gaillard RC, Guillon G, et al. Vasopressin antagonists allow demonstration of a novel type vasopressin receptor in the rat adenohypophysis. Mol Pharmacol. 1986;30:171–177. PubMed

Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc. 1992;114:10663–10665. doi: 10.1021/ja00052a088. DOI

Kihlberg J, Åhman J, Walse B, et al. Glycosylated peptide hormones: pharmacological properties and conformational studies of analogues of [1-Desamino,8-d-arginine]vasopressin. J Med Chem. 1995;38:161–169. doi: 10.1021/jm00001a021. PubMed DOI

Koradi R, Billeter M, Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14:52–55. doi: 10.1016/0263-7855(96)00009-4. PubMed DOI

Kumar A, Ernst RR, Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton–proton cross relaxation networks in biological macromolecules. Biochim Biophys Res Commun. 1980;95:1–10. doi: 10.1016/0006-291X(80)90695-6. PubMed DOI

Langelaan DN, Rainey JK. Membrane catalysis of peptide–receptor binding. Biochem Cell Biol. 2010;88:203–210. doi: 10.1139/O09-129. PubMed DOI PMC

Langelaan DN, Ngweniform P, Rainey JK. Biophysical characterization of G-protein coupled receptor–peptide ligand binding. Biochem Cell Biol. 2011;89:98–105. doi: 10.1139/O10-142. PubMed DOI PMC

Langs DA, Smith GD, Stezowski JJ, Hughes RE. Structure of pressinoic acid: the cyclic moiety of vasopressin. Science. 1986;232:1240–1242. doi: 10.1126/science.3704648. PubMed DOI

Larive CK, Rabenstein DL. Dynamics of cis/trans isomerization of the cysteine6-proline peptide bonds of oxytocin and arginine-vasopressin in aqueous and methanol solutions. J Am Chem Soc. 1993;115:2833–2836. doi: 10.1021/ja00060a033. DOI

Larive CK, Guerra L, Rabenstein DL. Cis/trans conformational equilibrium across the cysteine6-proline peptide bond of oxytocin, arginine vasopressin, and lysine vasopressin. J Am Chem Soc. 1992;114:7331–7337. doi: 10.1021/ja00045a001. DOI

Lebl M, Jost K, Brtnik F. Handbook of neurohypophyseal hormone analogs. Boca Raton: CRC Press Inc.; 1987. Tables of analogs; pp. 127–267.

Lewis PN, Momany FA, Scheraga HA. Chain reversals in proteins. Biochim Biophys Acta. 1973;303:1671–1695. PubMed

Liwo A, Tempczyk A, Ołdziej S, et al. Exploration of the conformational space of oxytocin and arginine-vasopressin using the electrostatically driven Monte Carlo and molecular dynamics methods. Biopolymers. 1996;38:157–175. doi: 10.1002/(SICI)1097-0282(199602)38:2<157::AID-BIP3>3.0.CO;2-U. PubMed DOI

Lubecka EA, Ciarkowski J, Prahl A, Sikorska E. Highly potent antidiuretic antagonists: conformational studies of vasopressin analogues modified with 1-naphthylalanine enantiomers at position 2. Chem Biol Drug Des. 2012;79:1033–1042. doi: 10.1111/j.1747-0285.2012.01358.x. PubMed DOI

Lubecka EA, Sikorska E, Marcinkowska A, Ciarkowski J. Conformational studies of neurohypophyseal hormones analogues with glycoconjugates by NMR spectroscopy. J Pept Sci. 2014;20:406–414. doi: 10.1002/psc.2628. PubMed DOI

MacKenzie KR, Prestegard JH, Engelman DM. A transmembrane helix dimer: structure and implications. Science. 1997;276:131–133. doi: 10.1126/science.276.5309.131. PubMed DOI

Manning M, Olma A, Klis WA, et al. Design of more potent antagonists of the antidiuretic responses to arginine vasopressin. J Med Chem. 1982;25:45–50. doi: 10.1021/jm00343a009. PubMed DOI

Martínez JM, Martínez L. Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem. 2003;24:819–825. doi: 10.1002/jcc.10216. PubMed DOI

Martínez L, Andrade R, Birgin EG, Martínez JM. Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI

Mierke DF, Giragossian C. Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev. 2001;21:450–471. doi: 10.1002/med.1018. PubMed DOI

Milton RC, Milton SC, Kent SB. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity [corrected] Science. 1992;256:1445–1448. doi: 10.1126/science.1604320. PubMed DOI

Moroder L, Romano R, Guba W, et al. New evidence for a membrane-bound pathway in hormone receptor binding. Biochemistry (Mosc) 1993;32:13551–13559. doi: 10.1021/bi00212a022. PubMed DOI

Munsick RA. Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinol. 1960;66:451–458. doi: 10.1210/endo-66-3-451. PubMed DOI

Newschaffer CJ, Croen LA, Daniels J, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:235–258. doi: 10.1146/annurev.publhealth.28.021406.144007. PubMed DOI

Pages G, Torres A, Ju P, et al. Structure of the pore-helix of the hERG K+ channel. Eur Biophys J. 2009;39:111–120. doi: 10.1007/s00249-009-0433-1. PubMed DOI

Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739–745. doi: 10.1126/science.289.5480.739. PubMed DOI

Palmer AG, Cavanagh J, Wright PE, Rance M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation spectroscopy. J Magn Reson. 1991;93:151–170.

Pappenheimer JR, Dahl CE, Karnovsky ML, Maggio JE. Intestinal absorption and excretion of octapeptides composed of D amino acids. Proc Natl Acad Sci. 1994;91:1942–1945. doi: 10.1073/pnas.91.5.1942. PubMed DOI PMC

Pappenheimer JR, Karnovsky ML, Maggio JE. Absorption and excretion of undegradable peptides: role of lipid solubility and net charge. J Pharmacol Exp Ther. 1997;280:292–300. PubMed

Pardi A, Billeter M, Wüthrich K. Calibration of the angular-dependence of the amide proton-C-alpha proton coupling-constants, 3JHNHα, in a globular protein—use of 3 JHNHα for identification of helical secondary structure. J Mol Biol. 1984;180:741–751. doi: 10.1016/0022-2836(84)90035-4. PubMed DOI

Postina R, Kojro E, Fahrenholz F. Separate agonist and peptide antagonist binding sites of the oxytocin receptor defined by their transfer into the V2 vasopressin receptor. J Biol Chem. 1996;271:31593–31601. doi: 10.1074/jbc.271.49.31593. PubMed DOI

Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–99. doi: 10.1016/S0022-2836(63)80023-6. PubMed DOI

Rance M, Sorenson OW, Bodenhausen G, et al. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983;117:479–485. doi: 10.1016/0006-291X(83)91225-1. PubMed DOI

Rodziewicz-Motowidło S, Sikorska E, Oleszczuk M, Czaplewski C. Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part II: studies in the SDS micelle. J Pept Sci. 2008;14:85–96. doi: 10.1002/psc.917. PubMed DOI

Sadowski M, Pankiewicz J, Scholtzova H, et al. A synthetic peptide blocking the apolipoprotein E/β-amyloid binding mitigates β-amyloid toxicity and fibril formation in vitro and reduces β-amyloid plaques in transgenic mice. Am J Pathol. 2004;165:937–948. doi: 10.1016/S0002-9440(10)63355-X. PubMed DOI PMC

Sankararamakrishnan R. Recognition of GPCRs by peptide ligands and membrane compartments theory: structural studies of endogenous peptide hormones in membrane environment. Biosci Rep. 2006;26:131–158. doi: 10.1007/s10540-006-9014-z. PubMed DOI

Sayle R, Milner-White JE. RASMOL: biomolecular graphics for all. TIBS. 1995;20:374–376. PubMed

Schleucher J, Schwendinger M, Sattler M, et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR. 1994;4:301–306. doi: 10.1007/BF00175254. PubMed DOI

Schmidt JM, Ohlenschläger O, Rüterjans H, et al. Conformation of [8-arginine]vasopressin and V1 antagonists in dimethyl sulfoxide solution derived from two-dimensional NMR spectroscopy and molecular dynamics simulation. Eur J Biochem. 1991;201:355–371. doi: 10.1111/j.1432-1033.1991.tb16293.x. PubMed DOI

Schwyzer R. In search of the “bio-active conformation”—is it induced by the target cell membrane? J Mol Recognit. 1995;8:3–8. doi: 10.1002/jmr.300080103. PubMed DOI

Sikorska E, Rodziewicz-Motowidło S. Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part I: studies in water. J Pept Sci. 2008;14:76–84. doi: 10.1002/psc.918. PubMed DOI

Sikorska E, Kwiatkowska A, Sobolewski D, et al. Influence of bulky 3,3′-diphenylalanine enantiomers replacing position 2 of AVP analogues on their conformations: NMR and molecular modeling studies. Eur J Med Chem. 2010;45:4065–4073. doi: 10.1016/j.ejmech.2010.05.066. PubMed DOI

Sikorska E, Iłowska E, Wyrzykowski D, Kwiatkowska A. Membrane structure and interactions of peptide hormones with model lipid bilayers. Biochim Biophys Acta. 2012;1818:2982–2993. doi: 10.1016/j.bbamem.2012.07.008. PubMed DOI

Slaninová J. Fundamental biological evaluation. In: Lebl M, Jost K, Brtnik F, editors. Handbook of neurohypophyseal hormone analogs. Boca Raton: CRC Press; 1987. pp. 83–107.

Ślusarz MJ, Giełdoń A, Ślusarz R, Ciarkowski J. Analysis of interactions responsible for vasopressin binding to human neurohyphophyseal hormone receptors–molecular dynamics study of the activated receptor–vasopressin-Gα systems. J Pept Sci. 2006;12:180–189. doi: 10.1002/psc.714. PubMed DOI

Ślusarz MJ, Sikorska E, Ślusarz R, Ciarkowski J. Molecular docking-based study of vasopressin analogues modified at positions 2 and 3 with N-methylphenylalanine: influence on receptor-bound conformations and interactions with vasopressin and oxytocin receptors. J Med Chem. 2006;49:2463–2469. doi: 10.1021/jm051075m. PubMed DOI

Strandberg E, Ulrich AS. NMR methods for studying membrane-active antimicrobial peptides. Concepts Magn Reson. 2004;23A:89–120. doi: 10.1002/cmr.a.20024. DOI

Thakur R, Das A, Chakraborty A. The fate of anticancer drug, ellipticine in DPPC and DMPC liposomes upon interaction with HSA: a photophysical approach. J Photochem Photobiol B. 2014;130:122–131. doi: 10.1016/j.jphotobiol.2013.10.016. PubMed DOI

Tieleman DP, van der Spoel D, Berendsen HJC. Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J Phys Chem B. 2000;104:6380–6388. doi: 10.1021/jp001268f. DOI

Toniolo C, Benedetti E. Structures of polypeptides from α-amino acids disubstituted at the α-carbon. Macromolecules. 1991;24:4004–4009. doi: 10.1021/ma00014a006. DOI

Torda AE, Scheek RM, Gunsteren WF. Time-dependent distance restraints in molecular dynamics simulations. Chem Phys Lett. 1989;157:289–294. doi: 10.1016/0009-2614(89)87249-5. DOI

Tu A, Lee J, Deb KK, Hruby VJ. Laser Raman spectroscopy and circular dichroism studies of the peptide hormones mesotocin, vasotocin, lysine vasopressin, and arginine vasopressin. J Biol Chem. 1979;254:3272–3278. PubMed

Urry DW, Quadrifoglio F, Walter R, Schwartz IL. Conformational studies on neurohypophyseal hormones: the disulfide bridge of oxytocin. Proc Natl Acad Sci. 1968;60:967–974. doi: 10.1073/pnas.60.3.967. PubMed DOI PMC

Van Kesteren RE, Smit AB, Dirks RW, et al. Evolution of the vasopressin/oxytocin superfamily: characterization of a cDNA encoding a vasopressin related precursor, preproconopressin, from the mollusc Lymnaea stagnalis. Proc Natl Acad Sci. 1992;89:4593–4597. doi: 10.1073/pnas.89.10.4593. PubMed DOI PMC

Vávra I, Machová A, Krejčí I. Antidiuretic action of 1-deamino 8-d-arginine in unanesthetized rats. J Pharmacol Exp Ther. 1974;188:241–247. PubMed

Walse B, Kihlberg J, Drakenberg T. Conformation of desmopressin, an analogue of the peptide hormone vasopressin, in aqueous solution as determined by NMR spectroscopy. Eur J Biochem. 1998;252:428–440. doi: 10.1046/j.1432-1327.1998.2520428.x. PubMed DOI

Walter R. Identification of sites in oxytocin involved in uterine receptor recognition and activation. Fed Proc Am Soc Exp Biol. 1977;36:1872–1878. PubMed

Warne JM, Harding KE, Balment RJ. Neurohypophysial hormones and renal function in fish and mammals. Comp Biochem Physiol. 2001;132B:231–237. PubMed

Warschawski DE, Arnold AA, Beaugrand M, et al. Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta. 2011;1808:1957–1974. doi: 10.1016/j.bbamem.2011.03.016. PubMed DOI

Welch BD, VanDemark AP, Heroux A, et al. Potent D-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci. 2007;104:16828–16833. doi: 10.1073/pnas.0708109104. PubMed DOI PMC

Williamson MP. The structure and function of proline-rich regions in proteins. Biochem J. 1994;297:249–260. doi: 10.1042/bj2970249. PubMed DOI PMC

Williamson MP, Havel TF, Wüthrich K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol. 1985;182:295–315. doi: 10.1016/0022-2836(85)90347-X. PubMed DOI

Wishart DS, Bigam CG, Holm A, et al. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest neighbor effects. J Biomol NMR. 1995;5:67–81. doi: 10.1007/BF00227471. PubMed DOI

Wüthrich K. NMR of proteins and nucleic acids. New York: Wiley; 1986.

Wymore T, Gao XF, Wong TC. Molecular dynamics simulation of the structure and dynamics of a dodecylphosphocholine micelle in aqueous solution. J Mol Struct. 1999;485–486:195–210. doi: 10.1016/S0022-2860(99)00090-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...