A New One-Tube Reaction Assay for the Universal Determination of Sweet Cherry (Prunus avium L.) Self-(In)Compatible MGST- and S-Alleles Using Capillary Fragment Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO1523
Ministry of Agriculture
TN01000062
Technology Agency of the Czech Republic
PubMed
37108095
PubMed Central
PMC10139232
DOI
10.3390/ijms24086931
PII: ijms24086931
Knihovny.cz E-zdroje
- Klíčová slova
- M locus-encoded glutathione-S-transferase, MAS, MGST, S-allele, fragment analysis, molecular marker assisted breeding, self-compatibility, self-incompatibility, sweet cherry,
- MeSH
- alely MeSH
- polymerázová řetězová reakce MeSH
- Prunus avium * genetika MeSH
- šlechtění rostlin MeSH
- slivoň * genetika MeSH
- Publikační typ
- časopisecké články MeSH
The sweet cherry plant (Prunus avium L.) is primarily self-incompatible, with so-called S-alleles responsible for the inability of flowers to be pollinated not only by their own pollen grains but also by pollen from other cherries having the same S-alleles. This characteristic has wide-ranging impacts on commercial growing, harvesting, and breeding. However, mutations in S-alleles as well as changes in the expression of M locus-encoded glutathione-S-transferase (MGST) can lead to complete or partial self-compatibility, simplifying orchard management and reducing possible crop losses. Knowledge of S-alleles is important for growers and breeders, but current determination methods are challenging, requiring several PCR runs. Here we present a system for the identification of multiple S-alleles and MGST promoter variants in one-tube PCR, with subsequent fragment analysis on a capillary genetic analyzer. The assay was shown to unequivocally determine three MGST alleles, 14 self-incompatible S-alleles, and all three known self-compatible S-alleles (S3', S4', S5') in 55 combinations tested, and thus it is especially suitable for routine S-allele diagnostics and molecular marker-assisted breeding for self-compatible sweet cherries. In addition, we identified a previously unknown S-allele in the 'Techlovicka´ genotype (S54) and a new variant of the MGST promoter with an 8-bp deletion in the ´Kronio´ cultivar.
Research and Breeding Institute of Pomology Holovousy Ltd Holovousy 129 508 01 Hořice Czech Republic
Zobrazit více v PubMed
de Nettancourt D. Incompatibility in Angiosperms. 1st ed. Springer; Berlin/Heidelberg, Germany: 1977. pp. 1–232. DOI
Muñoz-Sanz J.V., Zuriaga E., Cruz-García F., McClure B., Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. Front. Plant Sci. 2020;11:195. doi: 10.3389/fpls.2020.00195. PubMed DOI PMC
Crane M.B., Brown A.G. Incompatibility and Sterility in the Sweet Cherry, Prunus avium L. J. Pomol. Hortic. Sci. 1938;15:2–116. doi: 10.1080/03683621.1938.11513493. DOI
Tao R., Yamane H., Sugiura A., Murayama H., Sassa H., Mori H. Molecular Typing of S-alleles through Identification, Characterization and cDNA Cloning for S-RNases in Sweet Cherry. J. Am. Soc. Hortic. Sci. 1999;124:224–233. doi: 10.21273/JASHS.124.3.224. DOI
Yamane H., Ikeda K., Ushijima K., Sassa H., Tao R. A Pollen-Expressed Gene for a Novel Protein with an F-box Motif that is Very Tightly Linked to a Gene for S-RNase in Two Species of Cherry, Prunus cerasus and P. avium. Plant Cell Physiol. 2003;44:764–769. doi: 10.1093/pcp/pcg088. PubMed DOI
Schröpfer S., Schuster M., Flachowsky H. Detection of S-alleles in a sweet cherry collection from Azerbaijan and Turkey using next generation sequencing. Acta Hortic. 2022;1342:269–276. doi: 10.17660/ActaHortic.2022.1342.38. DOI
Matsumoto D., Tao R. Distinct Self-recognition in the Prunus S-RNase-based Gametophytic Self-incompatibility System. Hortic. J. 2016;85:289–305. doi: 10.2503/hortj.mi-ir06. DOI
Matsumoto D., Tao R. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. Plant Mol. Biol. 2016;91:459–469. doi: 10.1007/s11103-016-0479-2. PubMed DOI
Matsumoto D., Tao R. Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. Plant Mol. Biol. 2019;100:367–378. doi: 10.1007/s11103-019-00860-8. PubMed DOI
Lisek A., Kucharska D., Głowacka A., Rozpara E. Identification of S-haplotypes of European cultivars of sour cherry. J. Hortic. Sci. Biotechnol. 2017;92:484–492. doi: 10.1080/14620316.2017.1289071. DOI
Lewis D., Crowe L.K. Structure of the incompatibility gene. Heredity. 1954;8:357–363. doi: 10.1038/hdy.1954.38. DOI
Sonneveld T., Tobutt K.R., Vaughan S.P., Robbins T.P. Loss of Pollen-S Function in Two Self-Compatible Selections of Prunus avium Is Associated with Deletion/Mutation of an S Haplotype–Specific F-Box Gene. Plant Cell. 2004;17:37–51. doi: 10.1105/tpc.104.026963. PubMed DOI PMC
Marchese A., Bošković R.I., Caruso T., Raimondo A., Cutuli M., Tobutt K.R. A new self-compatibility haplotype in the sweet cherry ’Kronio’, S5’, attributable to a pollen-part mutation in the SFB gene. J. Exp. Bot. 2007;58:4347–4356. doi: 10.1093/jxb/erm322. PubMed DOI
Cachi A.M., Wünsch A. Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.) J. Exp. Bot. 2011;62:1847–1856. doi: 10.1093/jxb/erq374. PubMed DOI
Ono K., Akagi T., Morimoto T., W�Nsch A., Tao R., Wünsch A. Genome Re-Sequencing of Diverse Sweet Cherry (Prunus avium) Individuals Reveals a Modifier Gene Mutation Conferring Pollen-Part Self-Compatibility. Plant Cell Physiol. 2018;59:1265–1275. doi: 10.1093/pcp/pcy068. PubMed DOI
Bošković R., Tobutt K.R. Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica. 1996;90:245–250. doi: 10.1007/BF00023865. DOI
Bošković R., Russell K., Tobutt K. Inheritance of stylar ribonucleases in cherry progenies, and reassignment of incompatibility alleles to two incompatibility groups. Euphytica. 1997;95:221–228. doi: 10.1023/A:1002945529157. DOI
Sonneveld T., Robbins T.P., Bošković R., Tobutt K.R. Cloning of six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor. Appl. Genet. 2001;102:1046–1055. doi: 10.1007/s001220000525. DOI
Sonneveld T., Tobutt K.R., Robbins T.P. Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor. Appl. Genet. 2003;107:1059–1070. doi: 10.1007/s00122-003-1274-4. PubMed DOI
Sonneveld T., Robbins T.P., Tobutt K.R. Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed. 2006;125:305–307. doi: 10.1111/j.1439-0523.2006.01205.x. DOI
Vaughan S.P., Russell K., Sargent D.J., Tobutt K.R. Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype. Theor. Appl. Genet. 2006;112:856–866. doi: 10.1007/s00122-005-0187-9. PubMed DOI
Cachi A.M., Wünsch A., Vilanova A., Guàrdia M., Ciordia M., Aletà N. S-locus diversity and cross-compatibility of wild Prunus avium for timber breeding. Plant Breed. 2017;136:126–131. doi: 10.1111/pbr.12450. DOI
Lisek A., Rozpara E., Glowacka A., Kucharska D., Zawadzka M. Identification of S-genotypes of sweet cherry cultivars from Central and Eastern Europe. Hort. Sci. 2015;42:13–21. doi: 10.17221/103/2014-HORTSCI. DOI
Szikriszt B., Doǧan A., Ercisli S., Akcay M.E., Hegedüs A., Halász J. Molecular typing of the self-incompatibility locus of Turkish sweet cherry genotypes reflects phylogenetic relationships among cherries and other Prunus species. Tree Genet. Genomes. 2013;9:155–165. doi: 10.1007/s11295-012-0543-2. DOI
Wünsch A., Hormaza J.I. Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.) Theor. Appl. Genet. 2004;108:299–305. doi: 10.1007/s00122-003-1418-6. PubMed DOI
Vaughan S.P., Bošković R.I., Gisbert-Climent A., Russell K., Tobutt K.R. Characterisation of novel S-alleles from cherry (Prunus avium L.) Tree Genet. Genomes. 2008;4:531–541. doi: 10.1007/s11295-007-0129-6. DOI
Ikeda K., Watari A., Ushijima K., Yamane H., Hauck N.R., Iezzoni A.F., Tao R. Molecular Markers for the Self-compatible S4’-haplotype, a Pollen-part Mutant in Sweet Cherry (Prunus avium L.) J. Amer. Soc. Hort. Sci. 2004;129:724–728. doi: 10.21273/JASHS.129.5.0724. DOI
Muñoz-Espinoza C., Espinosa E., Bascuñán R., Tapia S., Meneses C., Almeida A. Development of a molecular marker for self-compatible S4′ haplotype in sweet cherry (Prunus avium L.) using high-resolution melting. Plant Breed. 2017;136:987–993. doi: 10.1111/pbr.12546. DOI
Schuster M. Self-incompatibility (S) genotypes of cultivated sweet cherries—An overview update 2020. Open Agrar. Repos. 2020 doi: 10.5073/20201016-141600. DOI
Lapins K. Stella, a self-fruitful sweet cherry. Can. J. Plant Sci. 1971;51:252–253. doi: 10.4141/cjps71-051. DOI
Kou X., Zhang L., Yang S., Li G., Ye J. Selection and validation of reference genes for quantitative RT-PCR analysis in peach fruit under different experimental conditions. Sci. Hortic. 2017;225:195–203. doi: 10.1016/j.scienta.2017.07.004. DOI
Cmejlova J., Rejlova M., Paprstein F., Cmejla R. A new one-tube reaction kit for the SSR genotyping of apple (Malus × domestica Borkh.) Plant Sci. 2021;303:110768. doi: 10.1016/j.plantsci.2020.110768. PubMed DOI
Holušová K., Čmejlová J., Suran P., Čmejla R., Sedlák J., Zelený L., Bartoš J. High-resolution genome-wide association study of a large Czech collection of sweet cherry (Prunus avium L.) on fruit maturity and quality traits. Hortic Res. 2022;10:uhac233. doi: 10.1093/hr/uhac233. PubMed DOI PMC
Peace C.P. DNA-informed breeding of rosaceous crops: Promises, progress and prospects. Hortic. Res. 2017;4:17006. doi: 10.1038/hortres.2017.6. PubMed DOI PMC
Sebolt A.M. Breeder profile: Nnadozie Oraguzie. RosBREED Newslett. 2011;2:5–6.
Patzak J., Henychová A., Paprštein F., Sedlák J. Molecular S-genotyping of sweet cherry (Prunus avium L.) genetic resources. Hort. Sci. 2019;46:146–152. doi: 10.17221/245/2017-HORTSCI. DOI