Novel LinA type 3 δ-hexachlorocyclohexane dehydrochlorinase
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26296732
PubMed Central
PMC4592873
DOI
10.1128/aem.01683-15
PII: AEM.01683-15
Knihovny.cz E-zdroje
- MeSH
- biotransformace MeSH
- hexachlorcyklohexan metabolismus MeSH
- insekticidy metabolismus MeSH
- kinetika MeSH
- lyasy genetika metabolismus MeSH
- metagenom * MeSH
- molekulární sekvence - údaje MeSH
- půda * MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie aminokyselin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dehydrochlorinases MeSH Prohlížeč
- delta-hexachlorocyclohexane MeSH Prohlížeč
- hexachlorcyklohexan MeSH
- insekticidy MeSH
- lyasy MeSH
- půda * MeSH
LinA is the first enzyme of the microbial degradation pathway of a chlorinated insecticide, hexachlorocyclohexane (HCH), and mediates the dehydrochlorination of α-, γ-, and δ-HCH. Its two variants, LinA type 1 and LinA type 2, which differ at 10 out of 156 amino acid residues, have been described. Their activities for the metabolism of different HCH isomers differ considerably but overall are high for γ-HCH, moderate for α-HCH, low for δ-HCH, and lacking for β-HCH. Here, we describe the characterization of a new variant of this enzyme, LinA type 3, whose gene was identified from the metagenome of an HCH-contaminated soil sample. Its deduced primary structure in the region spanning amino acid residues 1 to 147 of the protein exhibits 17 and 12 differences from LinA type 1 and LinA type 2, respectively. In addition, the residues GIHFAPS, present at the region spanning residues 148 to 154 in both LinA type 1 and LinA type 2, are deleted in LinA type 3.The activity of LinA type 3 for the metabolism of δ-HCH is several orders of magnitude higher than that of LinA type 1 or LinA type 2 and can be useful for improvement of the metabolism of δ-HCH.
Zobrazit více v PubMed
Willett KL, Ulrich EM, Hites RA. 1998. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207. doi: 10.1021/es9708530. DOI
Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services. 2005. Toxicological profile for alpha-, beta-, gamma- and delta-hexachlorocyclohexane. Centers for Disease Control and Prevention, Atlanta, GA: http://www.atsdr.cdc.gov/toxprofiles/tp43.pdf.
Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. 2007. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752. doi: 10.1007/s00253-007-1066-x. PubMed DOI
Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG. 2010. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80. doi: 10.1128/MMBR.00029-09. PubMed DOI PMC
Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, Kohler HPE, Buser HR, Holliger C, Lal R. 2006. Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727. doi: 10.1128/AEM.00192-06. PubMed DOI PMC
Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J, Nagata Y. 2007. Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 188:313–325. doi: 10.1007/s00203-007-0251-8. PubMed DOI
Raina V, Hauser A, Buser RH, Rentsch D, Sharma P, Lal R, Holliger C, Poiger JT, Kohler HPE. 2007. Hydroxylated metabolites of β- and δ-hexachlorocyclohexane: bacterial formation, stereochemical configuration, and occurrence in groundwater at a former production site. Environ Sci Technol 41:4292–4298. doi: 10.1021/es062908g. PubMed DOI
Geueke B, Miska ME, Poiger T, Rentsch D, Lal R, Holliger C, Kohler HPE. 2013. Enantioselective dehydrochlorination of δ-hexachlorocyclohexane and δ-pentachlorocyclohexene by LinA1 and LinA2 from Sphingobium indicum B90A. Appl Environ Microbiol 79:6180–6183. doi: 10.1128/AEM.01770-13. PubMed DOI PMC
Macwan AS, Kukshal V, Srivastava N, Javed S, Kumar A, Ramachandran R. 2012. Crystal structure of the hexachlorocyclohexane dehydrochlorinase (LinA-type 2): mutational analysis, thermostability and enantioselectivity. PLoS One 7:e50373. doi: 10.1371/journal.pone.0050373. PubMed DOI PMC
Suar M, Hauser A, Poiger T, Buser HR, Müller MD, Dogra C, Raina V, Holliger C, Vander Meer JR, Lal R, Kohler HPE. 2005. Enantioselective transformation of alpha-hexachlorocyclohexane by the dehydrochlorinases LinA1 and LinA2 from the soil bacterium Sphingomonas paucimobilis B90A. Appl Environ Microbiol 71:8514–8518. doi: 10.1128/AEM.71.12.8514-8518.2005. PubMed DOI PMC
Imai R, Nagata Y, Fukuda M, Takagi M, Yano K. 1991. Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from γ-hexachlorocyclohexane. J Bacteriol 173:6811–6819. PubMed PMC
Macwan AS, Javed S, Kumar A. 2011. Isolation of a novel thermostable dehydrochlorinase (LinA) from a soil metagenome. 3 Biotech 1:193–198. PubMed PMC
Trantírek L, Hynková K, Nagata Y, Murzin A, Ansorgová A, Sklenář V, Damborský J. 2001. Reaction mechanism and stereochemistry of γ-hexachlorocyclohexane dehydrochlorinase LinA. J Biol Chem 276:7734–7740. doi: 10.1074/jbc.M007452200. PubMed DOI
Buser HR, Müller MD. 1995. Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environ Sci Technol 29:664–672. doi: 10.1021/es00003a013. PubMed DOI
Zhao R, Chu S, Zhao R, Xu X, Liu X. 2005. Ultrasonic extraction followed by sulfuric acid silica gel cleanup for the determination of α-hexachlorocyclohexane enantiomers in biota samples. Anal Bioanal Chem 381:1248–1252. doi: 10.1007/s00216-004-3041-z. PubMed DOI
Johnson KA, Simpson ZB, Blom T. 2009. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal Biochem 387:30–41. doi: 10.1016/j.ab.2008.12.025. PubMed DOI
Wu J, Hong Q, Sun Y, Hong Y, Yan Q, Li S. 2007. Analysis of the role of LinA and LinB in biodegradation of δ-hexachlorocyclohexane. Environ Microbiol 9:2331–2340. doi: 10.1111/j.1462-2920.2007.01350.x. PubMed DOI
Okai M, Kubota K, Fukuda M, Nagata Y, Nagata K, Tanokura M. 2010. Crystal structure of γ-hexachlorocyclohexane dehydrochlorinase LinA from Sphingobium japonicum UT26. J Mol Biol 403:260–269. doi: 10.1016/j.jmb.2010.08.043. PubMed DOI
Turner P, Mamo G, Karlsson EN. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9. doi: 10.1186/1475-2859-6-9. PubMed DOI PMC
Kumar S, Tsai CJ, Nussinov R. 2000. Factors enhancing protein thermostability. Protein Eng 13:179–191. doi: 10.1093/protein/13.3.179. PubMed DOI
GENBANK
KF534798