Novel LinA type 3 δ-hexachlorocyclohexane dehydrochlorinase

. 2015 Nov ; 81 (21) : 7553-9. [epub] 20150821

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26296732

LinA is the first enzyme of the microbial degradation pathway of a chlorinated insecticide, hexachlorocyclohexane (HCH), and mediates the dehydrochlorination of α-, γ-, and δ-HCH. Its two variants, LinA type 1 and LinA type 2, which differ at 10 out of 156 amino acid residues, have been described. Their activities for the metabolism of different HCH isomers differ considerably but overall are high for γ-HCH, moderate for α-HCH, low for δ-HCH, and lacking for β-HCH. Here, we describe the characterization of a new variant of this enzyme, LinA type 3, whose gene was identified from the metagenome of an HCH-contaminated soil sample. Its deduced primary structure in the region spanning amino acid residues 1 to 147 of the protein exhibits 17 and 12 differences from LinA type 1 and LinA type 2, respectively. In addition, the residues GIHFAPS, present at the region spanning residues 148 to 154 in both LinA type 1 and LinA type 2, are deleted in LinA type 3.The activity of LinA type 3 for the metabolism of δ-HCH is several orders of magnitude higher than that of LinA type 1 or LinA type 2 and can be useful for improvement of the metabolism of δ-HCH.

Zobrazit více v PubMed

Willett KL, Ulrich EM, Hites RA. 1998. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2207. doi: 10.1021/es9708530. DOI

Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services. 2005. Toxicological profile for alpha-, beta-, gamma- and delta-hexachlorocyclohexane. Centers for Disease Control and Prevention, Atlanta, GA: http://www.atsdr.cdc.gov/toxprofiles/tp43.pdf.

Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. 2007. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol 76:741–752. doi: 10.1007/s00253-007-1066-x. PubMed DOI

Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG. 2010. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80. doi: 10.1128/MMBR.00029-09. PubMed DOI PMC

Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, Kohler HPE, Buser HR, Holliger C, Lal R. 2006. Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol 72:5720–5727. doi: 10.1128/AEM.00192-06. PubMed DOI PMC

Ito M, Prokop Z, Klvana M, Otsubo Y, Tsuda M, Damborsky J, Nagata Y. 2007. Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. Arch Microbiol 188:313–325. doi: 10.1007/s00203-007-0251-8. PubMed DOI

Raina V, Hauser A, Buser RH, Rentsch D, Sharma P, Lal R, Holliger C, Poiger JT, Kohler HPE. 2007. Hydroxylated metabolites of β- and δ-hexachlorocyclohexane: bacterial formation, stereochemical configuration, and occurrence in groundwater at a former production site. Environ Sci Technol 41:4292–4298. doi: 10.1021/es062908g. PubMed DOI

Geueke B, Miska ME, Poiger T, Rentsch D, Lal R, Holliger C, Kohler HPE. 2013. Enantioselective dehydrochlorination of δ-hexachlorocyclohexane and δ-pentachlorocyclohexene by LinA1 and LinA2 from Sphingobium indicum B90A. Appl Environ Microbiol 79:6180–6183. doi: 10.1128/AEM.01770-13. PubMed DOI PMC

Macwan AS, Kukshal V, Srivastava N, Javed S, Kumar A, Ramachandran R. 2012. Crystal structure of the hexachlorocyclohexane dehydrochlorinase (LinA-type 2): mutational analysis, thermostability and enantioselectivity. PLoS One 7:e50373. doi: 10.1371/journal.pone.0050373. PubMed DOI PMC

Suar M, Hauser A, Poiger T, Buser HR, Müller MD, Dogra C, Raina V, Holliger C, Vander Meer JR, Lal R, Kohler HPE. 2005. Enantioselective transformation of alpha-hexachlorocyclohexane by the dehydrochlorinases LinA1 and LinA2 from the soil bacterium Sphingomonas paucimobilis B90A. Appl Environ Microbiol 71:8514–8518. doi: 10.1128/AEM.71.12.8514-8518.2005. PubMed DOI PMC

Imai R, Nagata Y, Fukuda M, Takagi M, Yano K. 1991. Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from γ-hexachlorocyclohexane. J Bacteriol 173:6811–6819. PubMed PMC

Macwan AS, Javed S, Kumar A. 2011. Isolation of a novel thermostable dehydrochlorinase (LinA) from a soil metagenome. 3 Biotech 1:193–198. PubMed PMC

Trantírek L, Hynková K, Nagata Y, Murzin A, Ansorgová A, Sklenář V, Damborský J. 2001. Reaction mechanism and stereochemistry of γ-hexachlorocyclohexane dehydrochlorinase LinA. J Biol Chem 276:7734–7740. doi: 10.1074/jbc.M007452200. PubMed DOI

Buser HR, Müller MD. 1995. Isomer and enantioselective degradation of hexachlorocyclohexane isomers in sewage sludge under anaerobic conditions. Environ Sci Technol 29:664–672. doi: 10.1021/es00003a013. PubMed DOI

Zhao R, Chu S, Zhao R, Xu X, Liu X. 2005. Ultrasonic extraction followed by sulfuric acid silica gel cleanup for the determination of α-hexachlorocyclohexane enantiomers in biota samples. Anal Bioanal Chem 381:1248–1252. doi: 10.1007/s00216-004-3041-z. PubMed DOI

Johnson KA, Simpson ZB, Blom T. 2009. FitSpace explorer: an algorithm to evaluate multidimensional parameter space in fitting kinetic data. Anal Biochem 387:30–41. doi: 10.1016/j.ab.2008.12.025. PubMed DOI

Wu J, Hong Q, Sun Y, Hong Y, Yan Q, Li S. 2007. Analysis of the role of LinA and LinB in biodegradation of δ-hexachlorocyclohexane. Environ Microbiol 9:2331–2340. doi: 10.1111/j.1462-2920.2007.01350.x. PubMed DOI

Okai M, Kubota K, Fukuda M, Nagata Y, Nagata K, Tanokura M. 2010. Crystal structure of γ-hexachlorocyclohexane dehydrochlorinase LinA from Sphingobium japonicum UT26. J Mol Biol 403:260–269. doi: 10.1016/j.jmb.2010.08.043. PubMed DOI

Turner P, Mamo G, Karlsson EN. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9. doi: 10.1186/1475-2859-6-9. PubMed DOI PMC

Kumar S, Tsai CJ, Nussinov R. 2000. Factors enhancing protein thermostability. Protein Eng 13:179–191. doi: 10.1093/protein/13.3.179. PubMed DOI

Zobrazit více v PubMed

GENBANK
KF534798

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...