Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26337523
DOI
10.1007/s10126-015-9643-y
PII: 10.1007/s10126-015-9643-y
Knihovny.cz E-zdroje
- Klíčová slova
- Alga Maesaengi (Capsosiphon fulvescens), Anti-coagulant activity, Monosaccharide composition, Structure, Ulvan,
- MeSH
- antikoagulancia chemie izolace a purifikace farmakologie MeSH
- Chlorophyta metabolismus MeSH
- chromatografie na tenké vrstvě MeSH
- chromatografie plynová MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- mannany chemie izolace a purifikace farmakologie MeSH
- monosacharidy analýza MeSH
- parciální tromboplastinový čas MeSH
- plamínková ionizace MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- trombinový čas MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antikoagulancia MeSH
- mannany MeSH
- monosacharidy MeSH
Previously, we reported that the sulphated polysaccharides (SPS)-CF, a water-soluble polysaccharide isolated and purified from Korean green alga Maesaengi (Capsosiphon fulvescens, Chlorophyta), is a glucuronogalactomannan based mainly on the monosaccharide composition determined by high-performance liquid chromatography (HPLC) analysis after 1-phenyl-3-methyl-5-pyrazolone (PMP) labelling of sugars in the acid (trifluoroacetic acid (TFA)) hydrolyzates of SPS-CF, which showed mannose (55.4 mol %), galactose (25.3 mol %) and glucuronic acid (16.3 mol %) as major sugars (Na et al., Int Immunopharmacol 10:364-370, 2010). However, the results of the present study re-performed for monosaccharide composition of this polysaccharide using, in addition to HPLC of PMP-labelled sugars, other separation methods, i.e. high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), gas chromatography with flame ionising detection (GC-FID) and thin-layer chromatography (TLC), clearly demonstrated that the most prominent neutral monosaccharides of SPS-CF are xylose (38.6-49.4 mol %) and rhamnose (39.6-45 mol %), while mannose and galactose are present at a much lesser extent or in negligible amount. These extensive monosaccharide analyses, correlation nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements confirmed the sulphated glucuronorhamnoxylan (ulvan) type of SPS-CF polysaccharide, whose backbone is composed of alternating sequence of 4-linked L-rhamnose-3-sulphate and D-xylose residues (ulvobiose U3s) carrying monomeric D-glucuronic acid or D-glucuronic acid-3-sulphate on O-2 of some L-rhamnose-3-sulphate units as the side chains. The SPS-CF exhibited significant in vitro anti-coagulant activity by which the activated partial thromboplastin time (aPTT) and thrombin time (TT) were significantly prolonged. The results of this study demonstrated that the ulvan SPS-CF isolated from Korean Maesaengi C. fulvescens can be considered a potential anti-coagulant agent.
Department of Pharmaceutical Science Gachon University Yeonsu gu Incheon 406 799 Republic of Korea
Institute of Organic Chemistry and Biochemistry AS CR Flemingovo sq 2 166 28 Prague 6 Czech Republic
Zobrazit více v PubMed
J Biol Chem. 1990 Sep 15;265(26):15403-9 PubMed
Glycoconj J. 1999 Oct;16(10):629-38 PubMed
J Biol Chem. 1996 Oct 25;271(43):26745-54 PubMed
Carbohydr Res. 2012 Nov 1;361:141-7 PubMed
Food Chem Toxicol. 2008 Aug;46(8):2653-7 PubMed
Anal Biochem. 1973 Aug;54(2):484-9 PubMed
Cell Biol Int. 2007 Aug;31(8):768-75 PubMed
Carbohydr Res. 1997 Nov 28;304(3-4):325-33 PubMed
Int J Biol Macromol. 2008 Mar 1;42(2):127-32 PubMed
Chem Biol Interact. 2010 Jan 5;183(1):249-54 PubMed
Arch Pharm Res. 2010 Jan;33(1):125-31 PubMed
Carbohydr Res. 1994 Dec 16;265(2):303-10 PubMed
Anal Biochem. 1982 Jul 1;123(2):303-9 PubMed
Glycoconj J. 1991 Aug;8(4):350-3 PubMed
Molecules. 2008 Aug 12;13(8):1671-95 PubMed
Biochem J. 1971 Dec;125(4):1009-18 PubMed
Biochemistry. 2004 Aug 31;43(34):11063-74 PubMed
J Biol Chem. 1985 Feb 10;260(3):1849-57 PubMed
Thromb Res. 1976 Dec;9(6):575-83 PubMed
Carbohydr Res. 2002 Sep 27;337(17):1553-62 PubMed
Carbohydr Res. 1999 Jun 30;319(1-4):154-65 PubMed
Glycobiology. 1995 Dec;5(8):807-11 PubMed
Mar Biotechnol (NY). 2011 Jun;13(3):433-40 PubMed
J Biol Chem. 2010 Mar 5;285(10):7312-23 PubMed
J Biol Chem. 1989 May 25;264(15):8692-8 PubMed
Carbohydr Res. 1992 Nov 4;235:309-11 PubMed
Carbohydr Polym. 2012 Nov 6;90(4):1804-10 PubMed
Int J Biol Macromol. 2001 Jun 12;28(5):395-9 PubMed
Anal Biochem. 1989 Aug 1;180(2):351-7 PubMed
Int Immunopharmacol. 2010 Mar;10 (3):364-70 PubMed
Biomacromolecules. 2007 Jun;8(6):1765-74 PubMed
Int J Biol Macromol. 1999 Nov;26(2-3):151-4 PubMed
J Biol Chem. 2011 Dec 9;286(49):42063-71 PubMed
Adv Carbohydr Chem Biochem. 1967;22:25-108 PubMed
Indian J Exp Biol. 2001 Apr;39(4):365-70 PubMed
Anal Biochem. 1994 Jun;219(2):278-87 PubMed
Glycobiology. 2003 Jun;13(6):29R-40R PubMed
Trends Cardiovasc Med. 1999 Nov;9(8):225-32 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Carbohydr Res. 1996 Mar 22;283:161-73 PubMed
Front Plant Sci. 2012 May 08;3:82 PubMed
Chem Pharm Bull (Tokyo). 2004 Sep;52(9):1091-4 PubMed
Bull Exp Biol Med. 2007 Jun;143(6):730-2 PubMed
Anal Biochem. 1994 Jun;219(2):375-8 PubMed
Hemodial Int. 2007 Apr;11(2):178-89 PubMed
Carbohydr Res. 1998 Dec 21;314(1-2):1-12 PubMed
Int J Biol Macromol. 2012 Dec;51(5):720-9 PubMed
J Biol Chem. 1996 Jul 26;271(30):17711-7 PubMed