Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26359085
PubMed Central
PMC4566138
DOI
10.1038/srep14013
PII: srep14013
Knihovny.cz E-zdroje
- MeSH
- Isoptera genetika MeSH
- pavouci * genetika MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
True predators are characterised by capturing a number of prey items during their lifetime and by being generalists. Some true predators are facultative specialists, but very few species are stenophagous specialists that catch only a few closely related prey types. A monophagous true predator that would exploit a single prey species has not been discovered yet. Representatives of the spider family Ammoxenidae have been reported to have evolved to only catch termites. Here we tested the hypothesis that Ammoxenus amphalodes is a monophagous termite-eater capturing only Hodotermes mossambicus. We studied the trophic niche of A. amphalodes by means of molecular analysis of the gut contents using Next Generation Sequencing. We investigated their willingness to accept alternative prey and observed their specific predatory behaviour and prey capture efficiency. We found all of the 1.4 million sequences were H. mossambicus. In the laboratory A. amphalodes did not accept any other prey, including other termite species. The spiders attacked the lateral side of the thorax of termites and immobilised them within 1 min. The paralysis efficiency was independent of predator:prey size ratio. The results strongly indicate that A. amphalodes is a monophagous prey specialist, specifically adapted to feed on H. mossambicus.
Zobrazit více v PubMed
Begon M., Townsend C. R. & Harper J. L. Ecology: From Individuals to Ecosystems. 4th edn. (Blackwell Publishing, Oxford, UK, 2006).
Thompson J. N. The coevolutionary process (University of Chicago Press, Chicago, USA, 1994).
Britt E. J., Hicks J. & Bennett A. F. The energetic consequences of dietary specialisation in populations of the garter snake. Thamnophis elegans. J. Exp. Biol. 209, 3164–3169 (2006). PubMed
Nyffeler M., Breene R. G. & Dean D. A. Facultative monophagy in the jumping spider, Plexippus paykulli (Audouin) (Araneae: Salticidae). Peckhamia 2(6), 92–96 (1990).
Líznarová E., Sentenská L., García L. F., Pekár S. & Viera C. Local trophic specialisation in a cosmopolitan spider (Araneae). Zoology 116(1), 20–26 (2013). PubMed
Pekár S. & Toft S. Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol. Rev. 90(3), 744–761 (2015). PubMed
McMurtry J. A. & Croft B. A. Life-styles of the Phytoseid mites and their roles in biological control. Annu. Rev. Entomol. 42, 291–321 (1997). PubMed
Li D. & Jackson R. R. Influence of diet on survivorship and growth in Portia fimbriata, an araneophagic jumping spider (Araneae: Salticidae). Can. J. Zool. 75, 1652–1658 (1997).
Slogget J. J. & Majerus M. E. N. Habitat preferences and diet in the predatory Coccinellidae (Coleoptera): an evolutionary perspective. Biol. J. Linnean Soc. 70, 63–88 (1999).
Yeargan K. V. Ecology of a bolas spider, Mastophora hutchinsoni: phenology, hunting tactics, and evidence for aggressive chemical mimicry. Oecologia 74, 524–530 (1988). PubMed
Pekár S., Toft S., Hrušková M. & Mayntz D. Dietary and prey-capture adaptations by which Zodarion germanicum, an ant-eating spider (Araneae: Zodariidae), specialises on the Formicinae. Naturwissenschaften 95(3), 233–239 (2008). PubMed
Coddington J. A. & Levi H. W. Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22, 565–592 (1991).
Pekár S., Coddington J. A. & Blackledge T. A. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution 66(3), 776–806 (2012). PubMed
Wesołowska W. & Cumming M. S. Mashonarus guttatus, gen. and sp. n., the second termitivorous jumping spider from Africa (Araneae: Salticidae). Bull. British Arachn. Soc. 12, 165–170 (2002).
Eberhard W. G. Chrosiotes tonala (Araneae, Theridiidae), a web-building spider, specializing on termites. Psyche 98, 7–19 (1991).
Jocqué R. & Dippenaar-Schoeman A. S. Two new termite-eating Diores species (Araneae: Zodariidae) and some observations on unique prey immobilization. J. Nat. Hist. 26, 1405–1412 (1992).
Van den Berg A. & Dippenaar-Schoeman A. S. Ground-living spiders from an area where the harvester termite Hodotermes mossambicus occurs in South Africa. Phytophylactica 23, 247–253 (1991).
Traniello J. F. A. & Leuthold R. H. Behavior and ecology of foraging in termites in Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe T., Bignell D. E., Higashi M.) 141–168 (Kluwer Academic Publishers, Dordrecht, Netherlands, 2000).
Dean W. R. J. & Milton S. The Karoo: Ecological Patterns and Proceses. (Cambridge University Press, Cambridge, UK, 1999).
Uys V. A Guide to the Termite Genera of Southern Africa in Plant Protection Research Institute Handbook No. 15. (Agricultural Research Council, Pretoria, 2002).
Dippenaar-Schoeman A. S., De Jager M. & Van den Berg A. Ammoxenus species (Araneae: Ammoxenidae)-specialist predators of harvester termites in South Africa. Afr. Plant Prot. 2, 103–109 (1996).
Dippenaar-Schoeman A. S. & Harris R. Food storage by a wandering ground spider (Araneae, Ammoxenidae, Ammoxenus). J. Arachnol. 33(3), 850–851 (2005).
Wilson D. S. & Clark A. B. Above ground predator defence in the harvester termite, Hodotermes mossambicus (Hagen). J. Entomol. Soc. South Africa 40, 271–282 (1977).
Dean W. R. J. Spider predation on termites (Hodotermitidae). J. Entomol. Soc. South Africa 51, 147–148 (1988).
Dippenaar-Schoeman A. S., De Jager M. & Van den Berg A. Behaviour and biology of two species of termite-eating spiders, Ammoxenus amphalodes and A. pentheri (Araneae: Ammoxenidae), in South Africa. Afr. Plant Prot. 2, 15–17 (1996).
Richardson M. L. & Hanks L. M. Partitioning of niches among four species of orb-weaving spiders in a grassland habitat. Environ. Entomol. 38(3), 651–656 (2009). PubMed
Symondson W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641 (2002). PubMed
King R. A., Read D. S., Traugott M. & Symondson W. O. C. Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963 (2008). PubMed
Pompanon F. et al.. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012). PubMed
Chapman E. G., Schmidt J. M., Welch K. D. & Harwood J. D. Molecular evidence for dietary selectivity and pest suppression potential in an epigeal spider community in winter wheat. Biol. Control 65, 72–86 (2013).
Brown D. S. et al.. Dietary competition between the alien Asian Musk Shrew (Suncus murinus) and a re-introduced population of Telfair’s Skink (Leiolopisma telfairii). Mol. Ecol. 23(15), 3695–3705 (2014). PubMed
Clare E. L. et al.. The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability. Mol. Ecol. 23(15), 3618–3632 (2014). PubMed
Zaidi R. H., Jaal Z., Hawkes N. J., Hemingway J. & Symondson W. O. C. Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol. Ecol. 8, 2081–2087 (1999). PubMed
Herbert P. D. N., Ratnasingham S. & deWaard J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270, S96–S99 (2003). PubMed PMC
Zeale M. R. K., Butlin R. K., Barker G. L. A., Lees D. C. & Jones G. Taxon specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Res. 11, 236–244 (2011). PubMed
Piñol J., San Andrés V., Clare E. L., Mir G. & Symondson W. O. C. A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes. Mol. Ecol. Res. 14(1), 18–26 (2014). PubMed
Razgour O. et al.. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol. Evol. 1(4), 556–570 (2011). PubMed PMC
Kruger F. et al.. An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Mol. Ecol. 23(15), 3657–3671 (2014). PubMed
Deagle B. E., Chiaradia A., McInnes J. & Jarman S. N. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conserv. Genet. 11, 2039–2048 (2010).
Huseynov E. F. O. The prey of the lynx spider Oxyopes globifer (Araneae, Oxyopidae) associated with a semidesert dwarf shrub in Azerbaijan. J. Arachnol. 34, 422–426 (2006).
Huseynov E. F. O. Natural prey of the jumping spider Menemerus taeniatus (Araneae: Salticidae). Eur. J. Entomol. 102, 797–799 (2005).
Dippenaar-Schoeman A. S. et al.. First Atlas of the Spiders of South Africa (ARC-Plant Protection Research Institute, Pretoria, 2010).
Pekár S., Král J. & Lubin Y. Natural history and karyotype of some ant-eating zodariid spiders (Araneae: Zodariidae) from Israel. J. Arachnol. 33(1), 50–62 (2005).
Pekár S., Šedo O., Líznarová E., Korenko S. & Zdráhal Z. David and the Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften 101(7), 533–540 (2014). PubMed
Luamba J. L. N. Recherches sur le polymorphisme et aperçu sur l’influence de l’analogue de l’hormone juvénile sur le développement d’un termite Hodotermes mossambicus (Isoptera, Hodotermitidae). Biol. Ecol. Médit. 7, 169–171 (1980).
Endler J. A. Interactions between predators and prey in Behavioural Ecology - An Evolutionary Approach (eds Krebs J. R. & Davies N. B.) 169–196 (Blackwell Scientific Publications, Oxford, UK, 1991).
Ferry-Graham L. A., Bolnick D. I. & Wainwright P. C. Using functional morphology to examine the ecology and evolution of specialization. Integr. Comp. Biol. 42, 265–277 (2002). PubMed
Allan R. A., Elgar M. A. & Capon R. J. Exploitation of an ant chemical alarm signal by the zodariid spider Habronestes bradleyi Walckenaer. Proc. R. Soc. Lond. B Biol. Sci. 263, 69–73 (1996).
Cárdenas M., Jiroš P. & Pekár S. Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften 99(8), 597–605 (2012). PubMed
Henschel J. R. Psammophily in Namib Desert spiders. J. Arid Environ. 37, 695–707 (1997).
Sint D., Raso L., Kaufmann R. & Traugott M. Optimizing methods for PCR-based analysis of predation. Mol. Ecol. Res. 11(5), 795–801 (2011). PubMed PMC
Hajibabaei M. et al.. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6(4), 959–964 (2006).
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994). PubMed
Tamura K. et al.. MEGA5: Molecular Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28, 2731–2739 (2011). PubMed PMC
Jarman S. N. Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20, 1644–1645 (2004). PubMed
Giardine B. et al.. Galaxy: A platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005). PubMed PMC
Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
Jones M., Ghoorah A. & Blaxter M. jMOTU and Taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE 6, e19259 (2011). PubMed PMC
R Development Core Team R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2010). Available at http://www.R-project.org (Accessed: 15th December 2014).
Smith E. P. Niche breadth, resource availability, and inference. Ecology 63(6), 1675–1681 (1982).
High Specific Efficiency of Venom of Two Prey-Specialized Spiders
Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey