Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30926825
PubMed Central
PMC6441022
DOI
10.1038/s41598-019-41664-6
PII: 10.1038/s41598-019-41664-6
Knihovny.cz E-zdroje
- MeSH
- pavouci fyziologie MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hunting other predators is dangerous, as the tables can turn and the hunter may become the hunted. Specialized araneophagic (spider eating) predators have evolved intriguing hunting strategies that allow them to invade spiders' webs by adopting a stealthy approach or using aggressive mimicry. Here, we present a newly discovered, specialized hunting strategy of the araneophagic spider Poecilochroa senilis (Araneae: Gnaphosidae), which forces its way into the silk retreat of the potential spider prey and immobilizes it by swathing gluey silk onto its forelegs and mouthparts. Poecilochroa senilis has been reported from the nests of a several, often large, spider species in the Negev desert (Israel), suggesting specialization on spiders as prey. Nevertheless, in laboratory experiments, we found that P. senilis has a wider trophic niche, and fed readily on several small insect species. The specialized nest-invading attack was used more frequently with large spiders, and even small juvenile P. senilis were able to attack and subdue larger spiders. Our observations show that specific hunting tactics, like nest usurpation, allow specialized predators to overcome defences of dangerous prey.
Zobrazit více v PubMed
Dawkins R, Krebs JR. Arms races between and within species. Proc. R. Soc. Lond. B Biol. Sci. 1979;205(1161):489–511. doi: 10.1098/rspb.1979.0081. PubMed DOI
Brodie ED, Brodie ED., Jr. Predator-prey arms races: asymmetrical selection on predators and prey may be reduced when prey are dangerous. Bioscience. 1999;49(7):557–568. doi: 10.2307/1313476. DOI
Edmunds, M. Defence in animals: a survey of anti-predator defences (Longmans, London, UK, 1974).
Mukherjee S, Heithaus MR. Dangerous prey and daring predators: a review. Biol. Rev. 2013;88(3):550–563. doi: 10.1111/brv.12014. PubMed DOI
Coddington JA, Levi HW. Systematics and evolution of spiders (Araneae) Annu. Rev. Ecol. Evol. Syst. 1991;22(1):565–592. doi: 10.1146/annurev.es.22.110191.003025. DOI
Cloudsley-Thompson JL. A review of the anti-predator devices of spiders. Bull. Br. Arachnol. Soc. 1995;10(3):81–96.
Manicom C, Schwarzkopf L, Alford RA, Schoener TW. Self-made shelters protect spiders from predation. Proc. Natl. Acad. Sci. USA. 2008;105(39):14903–14907. doi: 10.1073/pnas.0807107105. PubMed DOI PMC
Jarman EA, Jackson RR. The biology of Taieria erebus (Araneae, Gnaphosidae), an araneophagic spider from New Zealand: silk utilisation and predatory versatility. N.Z. J. Zool. 1986;13(4):521–541. doi: 10.1080/03014223.1986.10422980. DOI
Jackson RR, Whitehouse ME. The biology of New Zealand and Queensland pirate spiders (Araneae, Mimetidae): aggressive mimicry, araneophagy and prey specialization. J. Zool. 1986;210(2):279–303. doi: 10.1111/j.1469-7998.1986.tb03635.x. DOI
Jackson RR, Wilcox RS. Spider-eating spiders: despite the small size of their brain, jumping spiders in the genus Portia outwit other spiders with hunting techniques that include trial and error. Am. Sci. 1998;86(4):350–357. doi: 10.1511/1998.4.350. DOI
Wignall AE, Taylor PW. Assassin bug uses aggressive mimicry to lure spider prey. Proc. Royal Soc. B. 2011;278(1710):1427–1433. doi: 10.1098/rspb.2010.2060. PubMed DOI PMC
Cerveira AM, Jackson RR. Specialised predation by Palpimanus sp. (Araneae: Palpimanidae) on jumping spiders (Araneae: Salticidae) J. East Afr. Nat. Hist. 2005;94(2):303–317. doi: 10.2982/0012-8317(2005)94[303:SPBPSA]2.0.CO;2. DOI
Soley FG, Taylor PW. Araneophagic assassin bugs choose routes that minimize risk of detection by web-building spiders. Anim. Behav. 2012;84(2):315–321. doi: 10.1016/j.anbehav.2012.04.016. DOI
Jäger P. Über eine bemerkenswerte Verhaltensweise on Scotophaeus scutulatus (Araneae: Gnaphosidae) Arachnol. Mitt. 2002;24:72–75.
Whitehouse ME, Lubin Y. Relative seasonal abundance of five spider species in the Negev desert: intraguild interactions and their implications. Isr. J. Zool. 1998;44(2):187–200.
Guseinov EF, Cerveira AM, Jackson RR. The predatory strategy, natural diet, and life cycle of Cyrba algerina, an araneophagic jumping spider (Salticidae: Spartaeinae) from Azerbaijan. N.Z. J. Zool. 2004;31(4):291–303. doi: 10.1080/03014223.2004.9518382. DOI
Jackson RR, Blest AD. The biology of Portia fimbriata, a web‐building jumping spider (Araneae, Salticidae) from Queensland: Utilization of webs and predatory versatility. J. Zool. 1982;196(2):255–293. doi: 10.1111/j.1469-7998.1982.tb03504.x. DOI
Kloock CT. Diet and insectivory in the “araneophagic” spider, Mimetus notius (Araneae: Mimetidae) Am. Midl. Nat. 2001;146(2):424–428. doi: 10.1674/0003-0031(2001)146[0424:DAIITA]2.0.CO;2. DOI
Li DQ, Jackson RR, Barrion AT. Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. J. Zool. 1999;247(3):293–310. doi: 10.1111/j.1469-7998.1999.tb00993.x. DOI
Pekár S, Šobotník J, Lubin Y. Armoured spiderman: Morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae) Naturwissenschaften. 2011;98(7):593–603. doi: 10.1007/s00114-011-0804-1. PubMed DOI
Sanders D, Vogel E, Knop E. Individual and species‐specific traits explain niche size and functional role in spiders as generalist predators. J. Animal Ecol. 2015;84(1):134–142. doi: 10.1111/1365-2656.12271. PubMed DOI
Pekár S, Šedo O, Líznarová E, Korenko S, Zdráhal Z. David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften. 2014;101(7):533–540. doi: 10.1007/s00114-014-1189-8. PubMed DOI
Michálek O, Petráková L, Pekár S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 2017;7(8):2756–2766. doi: 10.1002/ece3.2812. PubMed DOI PMC
García LF, Viera C, Pekár S. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator. Sci. Nat. 2018;105(3–4):30. doi: 10.1007/s00114-018-1555-z. PubMed DOI
Chew RM. Ecology of the spiders of a desert community. J. N. Y. Entomol. Soc. 1961;69(1):5–41.
Gertsch WJ, Riechert SE. The spatial and temporal partitioning of a desert spider community, with descriptions of new species. Am. Mus. Novit. 1976;2604:1–25.
Polis GA, McCormick SJ. Scorpions, spiders and solpugids: predation and competition among distantly related taxa. Oecologia. 1986;71(1):111–116. doi: 10.1007/BF00377328. PubMed DOI
Polis GA, McCormick SJ. Intraguild predation and competition among desert scorpions. Ecology. 1987;68(2):332–343. doi: 10.2307/1939264. DOI
Polis GA. Complex trophic interactions in deserts: an empirical critique of food-web theory. Am. Nat. 1991;138(1):123–155. doi: 10.1086/285208. DOI
Jäger P. Observations on web-invasion by the jumping spider Thyene imperialis in Israel (Araneae: Salticidae) Arachnol. Mitt. 2012;43:63–66.
Jackson RR, Macnab AM. Display, mating, and predatory behaviour of the jumping spider Plexippus paykulli (Araneae: Salticidae) N.Z. J. Zool. 1989;16(2):151–168. doi: 10.1080/03014223.1989.10422565. DOI
Jackson RR, Poulsen BA. Predatory versatility and intraspecific interactions of Supunna picta (Araneae: Clubionidae) N.Z. J. Zool. 1990;17(2):169–184. doi: 10.1080/03014223.1990.10422594. DOI
Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN. Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter. 2015;11:2394–2403. doi: 10.1039/C4SM02130D. PubMed DOI
Wolff JO, Řezáč M, Krejčí T, Gorb SN. Hunting with sticky tape: functional shift in silk glands of araneophagous ground spiders (Gnaphosidae) J. Exp. Biol. 2017;220:2250–2259. doi: 10.1242/jeb.154682. PubMed DOI
Harland DP, Jackson RR. A knife in the back: use of prey-specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae) J. Zool. 2006;269(3):285–290. doi: 10.1111/j.1469-7998.2006.00112.x. DOI
Pekár S, Toft S, Hrušková M, Mayntz D. Dietary and prey-capture adaptations by which Zodarion germanicum, an ant-eating spider (Araneae: Zodariidae), specialises on the Formicinae. Naturwissenschaften. 2008;95(3):233–239. doi: 10.1007/s00114-007-0322-3. PubMed DOI
Petráková L, et al. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae) Sci. Rep. 2015;5(1):14013. doi: 10.1038/srep14013. PubMed DOI PMC
Jackson RR, Li D. One-encounter search-image formation by araneophagic spiders. Anim. Cogn. 2004;7(4):247–254. doi: 10.1007/s10071-004-0219-x. PubMed DOI
Pekár S, Cárdenas M. Innate prey preference overridden by familiarisation with detrimental prey in a specialised myrmecophagous predator. Sci. Nat. 2015;102(1–2):1257. PubMed
Staudinger MD, Hanlon RT, Juanes F. Primary and secondary defences of squid to cruising and ambush fish predators: variable tactics and their survival value. Anim. Behav. 2011;81(3):585–594. doi: 10.1016/j.anbehav.2010.12.002. DOI
Pruitt JN, Troupe JE. The effect of reproductive status and situation on locomotor performance and anti‐predator strategies in a funnel‐web spider. J. Zool. 2010;281(1):39–45. doi: 10.1111/j.1469-7998.2009.00677.x. DOI
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2017). Available from, http://www.R-project.org/.
Pekár, S., García, L. F. & Viera, C. Trophic Niches and Trophic Adaptations of Prey-Specialized Spiders from the Neotropics: A Guide. In Behaviour and Ecology of Spiders (Springer, Cham, 2017).
Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15(2):1–11. doi: 10.18637/jss.v015.i02. DOI
Pekár S, Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93. doi: 10.1111/eth.12713. DOI
Krebs, C. J. Ecological methodology (Harper & Row, New York, US, 1989).
Novakowski GC, Hahn NS, Fugi R. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop. Ichthyol. 2008;6(4):567–576. doi: 10.1590/S1679-62252008000400004. DOI
Johnson ML, Merritt DJ, Cribb BW, Trent C, Zalucki MP. Hidden trails: Visualizing arthropod silk. Entomol. Exp. Appl. 2006;121(3):271–274. doi: 10.1111/j.1570-8703.2006.00447.x. DOI