Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28428866
PubMed Central
PMC5395461
DOI
10.1002/ece3.2812
PII: ECE32812
Knihovny.cz E-zdroje
- Klíčová slova
- Araneae, Araneophagy, Drassodes, Lampona, NGS, cannibalism, morphology, trophic niche,
- Publikační typ
- časopisecké články MeSH
Specialist true predators are expected to exhibit higher capture efficiencies for the capture of larger and dangerous prey than generalist predators due to their possession of specialized morphological and behavioral adaptations. We used an araneophagous spider (Lampona murina) and a generalist spider (Drassodes lapidosus) as phylogenetically related model species and investigated their realized and fundamental trophic niches and their efficacy with respect to prey capture and prey handling. The trophic niche of both species confirmed that Lampona had a narrow trophic niche with a predominance of spider prey (including conspecifics), while the niche of Drassodes was wide, without any preference. DNA analysis of the gut contents of Lampona spiders collected in the field revealed that spiders form a significant part of its natural diet. Lampona captured significantly larger prey than itself and the prey captured by Drassodes. As concerns hunting strategy, Lampona grasped the prey with two pairs of legs possessing scopulae, whereas Drassodes immobilized prey with silk. Lampona possess forelegs equipped with scopulae and a thicker cuticle similar to other nonrelated araneophagous spiders. Lampona fed for a longer time and extracted more nutrients than Drassodes. We show that specialized behavioral and morphological adaptations altogether increase the hunting efficiency of specialists when compared to generalists.
Zobrazit více v PubMed
Bernays, E. A. , Singer, M. S. , & Rodrigues, D. (2004). Foraging in nature: Foraging efficiency and attentiveness in caterpillars with different diet breadths. Ecological Entomology, 29(4), 389–397.
Blamires, S. J. , Hochuli, D. F. , & Thompson, M. B. (2009). Prey protein influences growth and decoration building in the orb web spider Argiope keyserlingi . Ecological Entomology, 34(5), 545–550.
Blumstein, D. T. , Evans, C. S. , & Daniels, J. C. (2006). JWatcher 1.0. Available from: http://www.jwatcher.ucla.edu.
Bulbert, M. W. , Herberstein, M. E. , & Cassis, G. (2014). Assassin bug requires dangerous ant prey to bite first. Current Biology, 24(6), R220–R221. PubMed
Cerveira, A. M. , & Jackson, R. R. (2005). Specialised predation by Palpimanus sp. (Araneae: Palpimanidae) on jumping spiders (Araneae: Salticidae). Journal of East African Natural History, 94(2), 303–317.
Chinery, M. , Morris, P. , & Hughes, D. (1979). Killers of the wild. London: Salamander Books.
Clark, R. J. , & Jackson, R. R. (1994). Portia labia, a cannibalistic jumping spider, discriminataes between own and foreign eggsacs. International Journal of Comparative Psychology, 7(1), 38–43.
Clark, R. J. , Jackson, R. R. , & Waas, J. R. (1999). Draglines and assessment of fighting ability in cannibalistic jumping spiders. Journal of Insect Behavior, 12(6), 753–766.
Davies, N. B. , Krebs, J. R. , & West, S. A. (2012). An introduction to behavioural ecology, 4th ed Hoboken: Wiley‐Blackwell.
Deeleman‐Reinhold, C. L. (2001). Forest spiders of south east Asia: with a revision of the sac and ground spiders (Araneae: Clubionidae, Corinnidae, Liocranidae, Gnaphosidae, Prodidomidae, and Trochanterriidae [sic]). Leiden: Brill.
Drummond, H. (1983). Aquatic foraging in garter snakes: A comparison of specialists and generalists. Behaviour, 86(1), 1–30.
Eberhard, W. (1983). Predatory behaviour of an assassin spider, Chorizopes sp. (Araneidae), and the defensive behavior of its prey. Journal of the Bombay Natural History Society, 79(3), 522–524.
Ferry‐Graham, L. A. , Bolnick, D. I. , & Wainwright, P. C. (2002). Using functional morphology to examine the ecology and evolution of specialization. Integrative and Comparative Biology, 42(2), 265–277. PubMed
Foelix, R. F. , Jackson, R. R. , Henksmeyer, A. , & Hallas, S. (1984). Tarsal hairs specialized for prey capture in the salticid Portia . Revue Arachnologique, 5, 329–334.
Folmer, O. , Black, M. , Hoeh, W. , Lutz, R. , & Vrijenkoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299. PubMed
Futuyma, D. J. , & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics, 19, 207–233.
Griffiths, D. (1980). Foraging costs and relative prey size. American Naturalist, 116(5), 743–752.
Guseinov, E. F. , Cerveira, A. M. , & Jackson, R. R. (2004). The predatory strategy, natural diet, and life cycle of Cyrba algerina, an araneophagic jumping spider (Salticidae: Spartaeinae) from Azerbaijan. New Zealand Journal of Zoology, 31(4), 291–303.
Halekoh, U. , Højsgaard, S. , & Yan, J. (2006). The R package geepack for generalized estimating equations. Journal of Statistical Software, 15(2), 1–11.
Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Harland, D. P. , & Jackson, R. R. (2006). A knife in the back: Use of prey‐specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae). Journal of Zoology, 269(3), 285–290.
Haynes, D. L. , & Sisojevi, P. (1966). Predatory behavior of Philodromus rufus Walckenaer (Araneae: Thomisidae). Canadian Entomologist, 98(2), 113–133.
Hosseini, R. , Schmidt, O. , & Keller, M. A. (2008). Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: A polymerase chain reaction‐based method. Entomologia Experimentalis et Applicata, 126(3), 194–202.
Hurlbert, S. H. (1978). The measurement of niche overlap and some relatives. Ecology, 59(1), 67–77.
Jackson, R. R. (1990). Predatory versatility and intraspecific interactions of Cyrba algerina and Cyrba ocellata, web‐invading spartaeine jumping spiders (Araneae: Salticidae). New Zealand Journal of Zoology, 17(2), 157–168.
Jackson, R. R. , & Blest, A. D. (1982). The biology of Portia fimbriata, a web‐building jumping spider (Araneae, Salticidae) from Queensland: Utilization of webs and predatory versatility. Journal of Zoology, 196(2), 255–293.
Jackson, R. R. , & Pollard, S. D. (1997). Jumping spider mating strategies: Sex among cannibals in and out of webs In Choe J. C., & Crespi B. J. (Eds.), The evolution of mating systems in insects and arachnids (pp. 340–351). Cambridge: Cambridge University Press.
Jackson, R. R. , & Wilcox, R. S. (1990). Aggressive mimicry, prey‐specific predatory behaviour and predator‐recognition in the predator–prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behavioral Ecology and Sociobiology, 26(2), 111–119.
Jarman, S. N. (2004). Amplicon: Software for designing PCR primers on aligned DNA sequences. Bioinformatics, 20(10), 1644–1645. PubMed
Jones, M. , Ghoorah, A. , & Blaxter, M. (2011). jMOTU and Taxonerator: Turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE, 6(4), e19259. PubMed PMC
Katoh, K. , & Standley, D. M. (2013). MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. PubMed PMC
Kim, K. , Krafft, B. , & Choe, J. (2005). Cooperative prey capture by young subsocial spiders: II. Behavioral mechanism. Behavioral Ecology and Sociobiology, 59(1), 101–107.
Kloock, C. T. (2001). Diet and insectivory in the “araneophagic” spider, Mimetus notius (Araneae: Mimetidae). American Midland Naturalist, 146(2), 424–428.
Li, D. Q. , Jackson, R. R. , & Barrion, A. T. (1999). Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. Journal of Zoology, 247, 293–310.
Mayntz, D. , & Toft, S. (2001). Nutrient composition of the prey's diet affects growth and survivorship of a generalist predator. Oecologia, 127(2), 207–213. PubMed
Mori, A. , & Vincent, S. E. (2008). An integrative approach to specialization: Relationships among feeding morphology, mechanics, behaviour, performance and diet in two syntopic snakes. Journal of Zoology, 275(1), 47–56.
Mukherjee, S. , & Heithaus, M. R. (2013). Dangerous prey and daring predators: A review. Biological Reviews, 88(3), 550–563. PubMed
Novakowski, G. C. , Hahn, N. S. , & Fugi, R. (2008). Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotropical Ichthyology, 6(4), 567–576.
Pekár, S. , & Brabec, M. (2016). Modern analysis of biological data. Generalized linear models in R. MUNI Press: Brno.
Pekár, S. , Coddington, J. A. , & Blackledge, T. A. (2012). Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution, 66(3), 776–806. PubMed
Pekár, S. , Mayntz, D. , Ribeiro, T. , & Herberstein, M. E. (2010). Specialist ant‐eating spiders selectively feed on different body parts to balance nutrient intake. Animal Behaviour, 79(6), 1301–1306.
Pekár, S. , Šedo, O. , Líznarová, E. , Korenko, S. , & Zdráhal, Z. (2014). David and Goliath: Potent venom of an ant‐eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften, 101(7), 533–540. PubMed
Pekár, S. , Šobotník, J. , & Lubin, Y. (2011). Armoured spiderman: Morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften, 98(7), 593–603. PubMed
Pekár, S. , & Toft, S. (2015). Trophic specialisation in a predatory group: The case of prey‐specialised spiders (Araneae). Biological Reviews, 90(3), 744–761. PubMed
Penney, D. , & Gabriel, R. (2009). Feeding behavior of trunk‐living jumping spiders (Salticidae) in a coastal primary forest in the Gambia. Journal of Arachnology, 37(1), 113–115.
Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4, 53–74.
Platnick, N. I. (2000). A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea). Bulletin of the American Museum of Natural History, 245, 1–330.
Pollard, S. D. (1989). Constraints affecting partial prey consumption by a crab spider, Diaea sp. indet. (Araneae: Thomisidae). Oecologia, 81(3), 392–396. PubMed
Pollard, S. D. (1990). The feeding strategy of a crab spider, Diaea sp. indet. (Araneae: Thomisidae): post‐capture decision rules. Journal of Zoology, 222(4), 601–615.
R Core Team (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; Available from: http://www.R-project.org/.
Řezáč, M. , Pekár, S. , & Lubin, Y. (2008). How oniscophagous spiders overcome woodlouse armour. Journal of Zoology, 275(1), 64–71.
Rice, P. , Longden, I. , & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16(6), 276–277. PubMed
Sheppard, S. K. , Bell, J. , Sunderland, K. D. , Fenlon, J. , Skervin, D. , & Symondson, W. O. C. (2005). Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Molecular Ecology, 14(14), 4461–4468. PubMed
Tamura, K. , Peterson, D. , Peterson, N. , Stecher, G. , Nei, M. , & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. PubMed PMC
Thompson, J. N. (1994). The coevolutionary process. Chicago: University of Chicago Press.
Thompson, J. D. , Higgins, D. G. , & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. PubMed PMC
Toft, S. , Li, D. Q. , & Mayntz, D. (2010). A specialized araneophagic predator's short‐term nutrient utilization depends on the macronutrient content of prey rather than on prey taxonomic affiliation. Physiological Entomology, 35(4), 317–327.
Townsend, C. R. , Begon, M. , & Harper, J. L. (2003). Essentials of ecology, 2nd ed Oxford: Blackwell Science.
Vestheim, H. , & Jarman, S. N. (2008). Blocking primers to enhance PCR amplification of rare sequences in mixed samples ‐ A case study on prey DNA in Antarctic krill stomachs. Frontiers in Zoology, 5, 12. PubMed PMC
Wise, D. H. (1995). Spiders in ecological webs. Cambridge: Cambridge University Press.
Wolff, J. O. , Nentwig, W. , & Gorb, S. N. (2013). The great silk alternative: Multiple co‐evolution of web loss and sticky hairs in spiders. PLoS ONE, 8(5), e62682. PubMed PMC
Yamada, S. B. , & Boulding, E. G. (1998). Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell‐breaking crabs. Journal of Experimental Marine Biology and Ecology, 220(2), 191–211.
Zeale, M. R. K. , Butlin, R. K. , Barker, G. L. A. , Lees, D. C. , & Jones, G. (2011). Taxon‐specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11(2), 236–244. PubMed
Estimation of trophic niches in myrmecophagous spider predators
No ontogenetic shift in the realised trophic niche but in Batesian mimicry in an ant-eating spider
Nest usurpation: a specialised hunting strategy used to overcome dangerous spider prey