Composition and toxicity of venom produced by araneophagous white-tailed spiders (Lamponidae: Lampona sp.)
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36517485
PubMed Central
PMC9751281
DOI
10.1038/s41598-022-24694-5
PII: 10.1038/s41598-022-24694-5
Knihovny.cz E-resources
- MeSH
- Adaptation, Physiological MeSH
- Spider Venoms * toxicity chemistry MeSH
- Spiders * chemistry MeSH
- Peptides toxicity MeSH
- Predatory Behavior MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Spider Venoms * MeSH
- Peptides MeSH
Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.
See more in PubMed
Schendel V, Rash LD, Jenner RA, Undheim EA. The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins. 2019;11(11):666. doi: 10.3390/toxins11110666. PubMed DOI PMC
Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013;28(4):219–229. doi: 10.1016/j.tree.2012.10.020. PubMed DOI
Pineda SS, Chin YKY, Undheim EA, Senff S, Mobli M, Dauly C, Escoubas P, Nicholson GM, Kaas Q, Guo S, Herzig V, Mattick JS, King GF. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl. Acad. Sci. USA. 2020;117(21):11399–11408. doi: 10.1073/pnas.1914536117. PubMed DOI PMC
Chippaux JP, Williams V, White J. Snake venom variability: Methods of study, results and interpretation. Toxicon. 1991;29(11):1279–1303. doi: 10.1016/0041-0101(91)90116-9. PubMed DOI
Lyons K, Dugon MM, Healy K. Diet breadth mediates the prey specificity of venom potency in snakes. Toxins. 2020;12(2):74. doi: 10.3390/toxins12020074. PubMed DOI PMC
Pekár S, Bočánek O, Michálek O, Petráková L, Haddad CR, Šedo O, Zdráhal Z. Venom gland size and venom complexity—essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 2018;27(21):4257–4269. doi: 10.1111/mec.14859. PubMed DOI
Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 2016;17(1):401. doi: 10.1186/s12864-016-2755-6. PubMed DOI PMC
Holding ML, Biardi JE, Gibbs HL. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B. 2016;283(1829):20152841. doi: 10.1098/rspb.2015.2841. PubMed DOI PMC
Pekár S, Líznarová E, Bočánek O, Zdráhal Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 2018;87(6):1639–1652. doi: 10.1111/1365-2656.12900. PubMed DOI
Pekár S, Coddington JA, Blackledge TA. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution. 2012;66(3):776–806. doi: 10.1111/j.1558-5646.2011.01471.x. PubMed DOI
Herzig V, King GF, Undheim EA. Can we resolve the taxonomic bias in spider venom research? Toxicon: X. 2019;1:100005. doi: 10.1016/j.toxcx.2018.100005. PubMed DOI PMC
Platnick N. A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea) Bull. Am. Mus. Nat. Hist. 2000;2000(245):1–328. doi: 10.1206/0003-0090(2000)245<0001:ARAROT>2.0.CO;2. DOI
World Spider Catalog. Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 15 Mar 2021 (2021).
White J, Weinstein SA. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon. 2014;87:76–80. doi: 10.1016/j.toxicon.2014.05.021. PubMed DOI
Rash LD, King RG, Hodgson WC. Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona cylindrata) Toxicon. 2000;38:1111–1127. doi: 10.1016/S0041-0101(99)00226-3. PubMed DOI
Young AR, Pincus SJ. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon. 2001;39:391–400. doi: 10.1016/S0041-0101(00)00145-8. PubMed DOI
Michálek O, Petráková L, Pekár S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 2017;7(8):2756–2766. doi: 10.1002/ece3.2812. PubMed DOI PMC
Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, King GF. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon. 2012;60(4):478–491. doi: 10.1016/j.toxicon.2012.04.337. PubMed DOI
Diniz MR, Paiva AL, Guerra-Duarte C, Nishiyama MY, Jr, Mudadu MA, Oliveira UD, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE. 2018;13(8):e0200628. doi: 10.1371/journal.pone.0200628. PubMed DOI PMC
Wilson D, Boyle GM, McIntyre L, Nolan MJ, Parsons PG, Smith JJ, Tribonet L, Loukas A, Lidell MJ, Rash LD, Daly NL. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins. 2017;9(11):346. doi: 10.3390/toxins9110346. PubMed DOI PMC
Herzig V, King GF. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins. 2015;7(10):4366–4380. doi: 10.3390/toxins7104366. PubMed DOI PMC
Wang XH, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat. Struct. Biol. 2000;7(6):505–513. doi: 10.1038/75921. PubMed DOI
Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, Liang SP. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE. 2008;3(10):e3414. doi: 10.1371/journal.pone.0003414. PubMed DOI PMC
Luo J, Ding Y, Peng Z, Chen K, Zhang X, Xiao T, Chen J. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci. Rep. 2021;11:3211. doi: 10.1038/s41598-021-82668-5. PubMed DOI PMC
Cole J, Buszka PA, Mobley JA, Hataway RA. Characterization of the venom proteome for the wandering spider, Ctenus hibernalis (Aranea: Ctenidae) J. Proteom. Bioinform. 2016;9:196–199. doi: 10.4172/jpb.1000406. DOI
Korolkova Y, Maleeva E, Mikov A, Lobas A, Solovyeva E, Gorshkov M, Andreev Y, Peigneur S, Tytgat J, Kornilov F, Lushpa V, Mineev K, Kozlov S. New Insectotoxin from Tibellus Oblongus Spider venom presents novel daptation of ICK Fold. Toxins. 2021;13(1):29. doi: 10.3390/toxins13010029. PubMed DOI PMC
Koua D, Mary R, Ebou A, Barrachina C, El Koulali K, Cazals G, Charnet P, Dutertre S. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins. 2020;12(8):501. doi: 10.3390/toxins12080501. PubMed DOI PMC
Liberato T, Troncone LRP, Yamashiro ET, Serrano SM, Zelanis A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids. 2016;48(3):901–906. doi: 10.1007/s00726-015-2151-6. PubMed DOI
Oldrati V, Koua D, Allard PM, Hulo N, Arrell M, Nentwig W, Lisacek F, Wolfender JL, Kuhn-Nentwig L, Stöcklin R. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE. 2017;12(3):e0172966. doi: 10.1371/journal.pone.0172966. PubMed DOI PMC
King GF, Hardy MC. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013;58:475–496. doi: 10.1146/annurev-ento-120811-153650. PubMed DOI
Turner AJ, Isaac RE, Coates D. The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays. 2001;23(3):261–269. doi: 10.1002/1521-1878(200103)23:3<261::AID-BIES1036>3.0.CO;2-K. PubMed DOI
Casewell NR, Harrison RA, Wüster W, Wagstaff SC. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genom. 2009;10(1):1–12. doi: 10.1186/1471-2164-10-564. PubMed DOI PMC
Tan CH, Tan KY, Fung SY, Tan NH. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) BMC Genom. 2015;16(1):1–21. doi: 10.1186/s12864-015-1828-2. PubMed DOI PMC
Tan KY, Tan CH, Chanhome L, Tan NH. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: Elucidating geographical venom variation and insights into sequence novelty. PeerJ. 2017;5:e3142. doi: 10.7717/peerj.3142. PubMed DOI PMC
Undheim EA, Sunagar K, Herzig V, Kely L, Low DH, Jackson TN, Jones A, Kurniawan N, King GF, Ali SA, Antunes A, Ruder T, Fry BG. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor) Toxins. 2013;5(12):2488–2503. doi: 10.3390/toxins5122488. PubMed DOI PMC
do Nascimento SM, de Oliveira UC, Nishiyama-Jr MY, Tashima AK, Silva Junior PID. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. Toxin Rev. 2021;41(2):370–379. doi: 10.1080/15569543.2021.1878226. DOI
Zobel-Thropp PA, Mullins J, Kristensen C, Kronmiller BA, David CL, Breci LA, Binford GJ. Not so dangerous after all? Venom composition and potency of the Pholcid (daddy long-leg) spider Physocyclus mexicanus. Front. Ecol. Evol. 2019;7:256. doi: 10.3389/fevo.2019.00256. PubMed DOI PMC
Diniz MR, Paiva AL, Guerra-Duarte C, Nishiyama MY, Jr, Mudadu MA, Oliveira UD, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE. 2018;13(8):e0200628. doi: 10.1371/journal.pone.0200628. PubMed DOI PMC
He Q, Duan Z, Yu Y, Liu Z, Liu Z, Liang S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE. 2013;8(11):e81357. doi: 10.1371/journal.pone.0081357. PubMed DOI PMC
Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 2014;15(1):1–18. doi: 10.1186/1471-2164-15-366. PubMed DOI PMC
Haney RA, Matte T, Forsyth FS, Garb JE. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 2019;7:85. doi: 10.3389/fevo.2019.00085. PubMed DOI PMC
Lüddecke T, von Reumont BM, Förster F, Billion A, Timm T, Lochnit G, Vilcinskas A, Lemke S. An economic dilemma between molecular weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi) Biomolecules. 2020;10(7):978. doi: 10.3390/biom10070978. PubMed DOI PMC
Fainzilber M, Gordon D, Hasson A, Spira ME, Zlotkin E. Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 1991;202(2):589–595. doi: 10.1111/j.1432-1033.1991.tb16412.x. PubMed DOI
Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Ménez R, Stura E, Ménez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 2006;281(39):29030–29041. doi: 10.1074/jbc.M605850200. PubMed DOI
Krasnoperov VG, Shamotienko OG, Grishin EV. Isolation and properties of insect and crustacean-specific neurotoxins from the venom of the black widow spider (Latrodectus mactans tredecimguttatus) J. Nat. Toxins. 1992;1:17–23. PubMed
Xu X, Wang H, Zhang F, Hu Z, Liang S, Liu Z. A comparative analysis of the venom gland transcriptomes of the fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS ONE. 2015;10(10):e0139908. doi: 10.1371/journal.pone.0139908. PubMed DOI PMC
Kuzmenkov AI, Sachkova MY, Kovalchuk SI, Grishin EV, Vassilevski AA. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 2016;473(16):2495–2506. doi: 10.1042/BCJ20160436. PubMed DOI
Pekár S, Toft S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90(3):744–761. doi: 10.1111/brv.12133. PubMed DOI
Nyffeler M, Pusey BJ. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE. 2014;9(6):e99459. doi: 10.1371/journal.pone.0099459. PubMed DOI PMC
Pekár S, Lubin Y. Prey and predatory behavior of two zodariid species (Araneae, Zodariidae) J. Arachnol. 2009;37(1):118–121. doi: 10.1636/ST08-45.1. DOI
Michálek O, Kuhn-Nentwig L, Pekár S. High specific efficiency of venom of two prey-specialized spiders. Toxins. 2019;11(12):687. doi: 10.3390/toxins11120687. PubMed DOI PMC
Modahl CM, Mrinalini, Frietze S, Mackessy SP. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B. 2018;285(1884):20181003. doi: 10.1098/rspb.2018.1003. PubMed DOI PMC
Harris RJ, Zdenek CN, Harrich D, Frank N, Fry BG. An appetite for destruction: Detecting prey-selective binding of α-neurotoxins in the venom of Afro-Asian elapids. Toxins. 2020;12(3):205. doi: 10.3390/toxins12030205. PubMed DOI PMC
Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon: X. 2020;8:100063. doi: 10.1016/j.toxcx.2020.100063. PubMed DOI PMC
Kuhn-Nentwig L, Schaller J, Nentwig W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae) Toxicon. 1994;32(3):287–302. doi: 10.1016/0041-0101(94)90082-5. PubMed DOI
Friedel T, Nentwig W. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon. 1989;27(3):305–316. doi: 10.1016/0041-0101(89)90178-5. PubMed DOI
Eggs B, Wolff JO, Kuhn-Nentwig L, Gorb SN, Nentwig W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology. 2015;121(12):1166–1177. doi: 10.1111/eth.12432. DOI
Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2015).
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Song L, Florea L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 2015;4(1):s13742–s14015. doi: 10.1186/s13742-015-0089-y. PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2011;29(7):644. doi: 10.1038/nbt.1883. PubMed DOI PMC
Gilbert, D. EvidentialGene: Evidence directed gene predictions for eukaryotes. Available online at: http://arthropods.eugenes.org/EvidentialGene/ (2010).
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):1–10. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness. In: Kollmar M, editor. Gene Prediction. Humana; 2019. pp. 227–245. PubMed
Haas, B. TransDecoder. Available online at: https://github.com/TransDecoder/TransDecoder (2015).
Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8(10):785–786. doi: 10.1038/nmeth.1701. PubMed DOI
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
UniProt The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(1):480–489. PubMed PMC
Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 2008;4(5):e1000069. doi: 10.1371/journal.pcbi.1000069. PubMed DOI PMC
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. Pfam: The protein families database. Nucleic Acids Res. 2014;42(1):222–230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC
Wong ES, Hardy MC, Wood D, Bailey T, King GF. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS ONE. 2013;8(7):e66279. doi: 10.1371/journal.pone.0066279. PubMed DOI PMC
King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52(2):264–276. doi: 10.1016/j.toxicon.2008.05.020. PubMed DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/ (2019).
Venables, W. N. & Ripley, B. D. Random and mixed effects in Modern Applied Statistics with S 271–300 (Springer, New York, 2002).
Pekár S, Brabec M. Modern Analysis of Biological Data: Generalized Linear Models in R. Masaryk University Press; 2016.
Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15(2):1–11. doi: 10.18637/jss.v015.i02. DOI
Pekár S, Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124(2):86–93. doi: 10.1111/eth.12713. DOI