• This record comes from PubMed

Composition and toxicity of venom produced by araneophagous white-tailed spiders (Lamponidae: Lampona sp.)

. 2022 Dec 14 ; 12 (1) : 21597. [epub] 20221214

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 36517485
PubMed Central PMC9751281
DOI 10.1038/s41598-022-24694-5
PII: 10.1038/s41598-022-24694-5
Knihovny.cz E-resources

Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.

See more in PubMed

Schendel V, Rash LD, Jenner RA, Undheim EA. The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins. 2019;11(11):666. doi: 10.3390/toxins11110666. PubMed DOI PMC

Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013;28(4):219–229. doi: 10.1016/j.tree.2012.10.020. PubMed DOI

Pineda SS, Chin YKY, Undheim EA, Senff S, Mobli M, Dauly C, Escoubas P, Nicholson GM, Kaas Q, Guo S, Herzig V, Mattick JS, King GF. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl. Acad. Sci. USA. 2020;117(21):11399–11408. doi: 10.1073/pnas.1914536117. PubMed DOI PMC

Chippaux JP, Williams V, White J. Snake venom variability: Methods of study, results and interpretation. Toxicon. 1991;29(11):1279–1303. doi: 10.1016/0041-0101(91)90116-9. PubMed DOI

Lyons K, Dugon MM, Healy K. Diet breadth mediates the prey specificity of venom potency in snakes. Toxins. 2020;12(2):74. doi: 10.3390/toxins12020074. PubMed DOI PMC

Pekár S, Bočánek O, Michálek O, Petráková L, Haddad CR, Šedo O, Zdráhal Z. Venom gland size and venom complexity—essential trophic adaptations of venomous predators: A case study using spiders. Mol. Ecol. 2018;27(21):4257–4269. doi: 10.1111/mec.14859. PubMed DOI

Phuong MA, Mahardika GN, Alfaro ME. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genom. 2016;17(1):401. doi: 10.1186/s12864-016-2755-6. PubMed DOI PMC

Holding ML, Biardi JE, Gibbs HL. Coevolution of venom function and venom resistance in a rattlesnake predator and its squirrel prey. Proc. R. Soc. B. 2016;283(1829):20152841. doi: 10.1098/rspb.2015.2841. PubMed DOI PMC

Pekár S, Líznarová E, Bočánek O, Zdráhal Z. Venom of prey-specialized spiders is more toxic to their preferred prey: A result of prey-specific toxins. J. Anim. Ecol. 2018;87(6):1639–1652. doi: 10.1111/1365-2656.12900. PubMed DOI

Pekár S, Coddington JA, Blackledge TA. Evolution of stenophagy in spiders (Araneae): Evidence based on the comparative analysis of spider diets. Evolution. 2012;66(3):776–806. doi: 10.1111/j.1558-5646.2011.01471.x. PubMed DOI

Herzig V, King GF, Undheim EA. Can we resolve the taxonomic bias in spider venom research? Toxicon: X. 2019;1:100005. doi: 10.1016/j.toxcx.2018.100005. PubMed DOI PMC

Platnick N. A relimitation and revision of the Australasian ground spider family Lamponidae (Araneae: Gnaphosoidea) Bull. Am. Mus. Nat. Hist. 2000;2000(245):1–328. doi: 10.1206/0003-0090(2000)245<0001:ARAROT>2.0.CO;2. DOI

World Spider Catalog. Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 15 Mar 2021 (2021).

White J, Weinstein SA. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon. 2014;87:76–80. doi: 10.1016/j.toxicon.2014.05.021. PubMed DOI

Rash LD, King RG, Hodgson WC. Sex differences in the pharmacological activity of venom from the white-tailed spider (Lampona cylindrata) Toxicon. 2000;38:1111–1127. doi: 10.1016/S0041-0101(99)00226-3. PubMed DOI

Young AR, Pincus SJ. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon. 2001;39:391–400. doi: 10.1016/S0041-0101(00)00145-8. PubMed DOI

Michálek O, Petráková L, Pekár S. Capture efficiency and trophic adaptations of a specialist and generalist predator: A comparison. Ecol. Evol. 2017;7(8):2756–2766. doi: 10.1002/ece3.2812. PubMed DOI PMC

Klint JK, Senff S, Rupasinghe DB, Er SY, Herzig V, Nicholson GM, King GF. Spider-venom peptides that target voltage-gated sodium channels: Pharmacological tools and potential therapeutic leads. Toxicon. 2012;60(4):478–491. doi: 10.1016/j.toxicon.2012.04.337. PubMed DOI

Diniz MR, Paiva AL, Guerra-Duarte C, Nishiyama MY, Jr, Mudadu MA, Oliveira UD, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE. 2018;13(8):e0200628. doi: 10.1371/journal.pone.0200628. PubMed DOI PMC

Wilson D, Boyle GM, McIntyre L, Nolan MJ, Parsons PG, Smith JJ, Tribonet L, Loukas A, Lidell MJ, Rash LD, Daly NL. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins. 2017;9(11):346. doi: 10.3390/toxins9110346. PubMed DOI PMC

Herzig V, King GF. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-hexatoxin-Hv1a. Toxins. 2015;7(10):4366–4380. doi: 10.3390/toxins7104366. PubMed DOI PMC

Wang XH, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat. Struct. Biol. 2000;7(6):505–513. doi: 10.1038/75921. PubMed DOI

Yuan CH, He QY, Peng K, Diao JB, Jiang LP, Tang X, Liang SP. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS ONE. 2008;3(10):e3414. doi: 10.1371/journal.pone.0003414. PubMed DOI PMC

Luo J, Ding Y, Peng Z, Chen K, Zhang X, Xiao T, Chen J. Molecular diversity and evolutionary trends of cysteine-rich peptides from the venom glands of Chinese spider Heteropoda venatoria. Sci. Rep. 2021;11:3211. doi: 10.1038/s41598-021-82668-5. PubMed DOI PMC

Cole J, Buszka PA, Mobley JA, Hataway RA. Characterization of the venom proteome for the wandering spider, Ctenus hibernalis (Aranea: Ctenidae) J. Proteom. Bioinform. 2016;9:196–199. doi: 10.4172/jpb.1000406. DOI

Korolkova Y, Maleeva E, Mikov A, Lobas A, Solovyeva E, Gorshkov M, Andreev Y, Peigneur S, Tytgat J, Kornilov F, Lushpa V, Mineev K, Kozlov S. New Insectotoxin from Tibellus Oblongus Spider venom presents novel daptation of ICK Fold. Toxins. 2021;13(1):29. doi: 10.3390/toxins13010029. PubMed DOI PMC

Koua D, Mary R, Ebou A, Barrachina C, El Koulali K, Cazals G, Charnet P, Dutertre S. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins. 2020;12(8):501. doi: 10.3390/toxins12080501. PubMed DOI PMC

Liberato T, Troncone LRP, Yamashiro ET, Serrano SM, Zelanis A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids. 2016;48(3):901–906. doi: 10.1007/s00726-015-2151-6. PubMed DOI

Oldrati V, Koua D, Allard PM, Hulo N, Arrell M, Nentwig W, Lisacek F, Wolfender JL, Kuhn-Nentwig L, Stöcklin R. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE. 2017;12(3):e0172966. doi: 10.1371/journal.pone.0172966. PubMed DOI PMC

King GF, Hardy MC. Spider-venom peptides: Structure, pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013;58:475–496. doi: 10.1146/annurev-ento-120811-153650. PubMed DOI

Turner AJ, Isaac RE, Coates D. The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays. 2001;23(3):261–269. doi: 10.1002/1521-1878(200103)23:3<261::AID-BIES1036>3.0.CO;2-K. PubMed DOI

Casewell NR, Harrison RA, Wüster W, Wagstaff SC. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC Genom. 2009;10(1):1–12. doi: 10.1186/1471-2164-10-564. PubMed DOI PMC

Tan CH, Tan KY, Fung SY, Tan NH. Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah) BMC Genom. 2015;16(1):1–21. doi: 10.1186/s12864-015-1828-2. PubMed DOI PMC

Tan KY, Tan CH, Chanhome L, Tan NH. Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: Elucidating geographical venom variation and insights into sequence novelty. PeerJ. 2017;5:e3142. doi: 10.7717/peerj.3142. PubMed DOI PMC

Undheim EA, Sunagar K, Herzig V, Kely L, Low DH, Jackson TN, Jones A, Kurniawan N, King GF, Ali SA, Antunes A, Ruder T, Fry BG. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor) Toxins. 2013;5(12):2488–2503. doi: 10.3390/toxins5122488. PubMed DOI PMC

do Nascimento SM, de Oliveira UC, Nishiyama-Jr MY, Tashima AK, Silva Junior PID. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. Toxin Rev. 2021;41(2):370–379. doi: 10.1080/15569543.2021.1878226. DOI

Zobel-Thropp PA, Mullins J, Kristensen C, Kronmiller BA, David CL, Breci LA, Binford GJ. Not so dangerous after all? Venom composition and potency of the Pholcid (daddy long-leg) spider Physocyclus mexicanus. Front. Ecol. Evol. 2019;7:256. doi: 10.3389/fevo.2019.00256. PubMed DOI PMC

Diniz MR, Paiva AL, Guerra-Duarte C, Nishiyama MY, Jr, Mudadu MA, Oliveira UD, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE. 2018;13(8):e0200628. doi: 10.1371/journal.pone.0200628. PubMed DOI PMC

He Q, Duan Z, Yu Y, Liu Z, Liu Z, Liang S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE. 2013;8(11):e81357. doi: 10.1371/journal.pone.0081357. PubMed DOI PMC

Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 2014;15(1):1–18. doi: 10.1186/1471-2164-15-366. PubMed DOI PMC

Haney RA, Matte T, Forsyth FS, Garb JE. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 2019;7:85. doi: 10.3389/fevo.2019.00085. PubMed DOI PMC

Lüddecke T, von Reumont BM, Förster F, Billion A, Timm T, Lochnit G, Vilcinskas A, Lemke S. An economic dilemma between molecular weapon systems may explain an arachno-atypical venom in wasp spiders (Argiope bruennichi) Biomolecules. 2020;10(7):978. doi: 10.3390/biom10070978. PubMed DOI PMC

Fainzilber M, Gordon D, Hasson A, Spira ME, Zlotkin E. Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur. J. Biochem. 1991;202(2):589–595. doi: 10.1111/j.1432-1033.1991.tb16412.x. PubMed DOI

Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Ménez R, Stura E, Ménez A, Kini RM. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem. 2006;281(39):29030–29041. doi: 10.1074/jbc.M605850200. PubMed DOI

Krasnoperov VG, Shamotienko OG, Grishin EV. Isolation and properties of insect and crustacean-specific neurotoxins from the venom of the black widow spider (Latrodectus mactans tredecimguttatus) J. Nat. Toxins. 1992;1:17–23. PubMed

Xu X, Wang H, Zhang F, Hu Z, Liang S, Liu Z. A comparative analysis of the venom gland transcriptomes of the fishing spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS ONE. 2015;10(10):e0139908. doi: 10.1371/journal.pone.0139908. PubMed DOI PMC

Kuzmenkov AI, Sachkova MY, Kovalchuk SI, Grishin EV, Vassilevski AA. Lachesana tarabaevi, an expert in membrane-active toxins. Biochem. J. 2016;473(16):2495–2506. doi: 10.1042/BCJ20160436. PubMed DOI

Pekár S, Toft S. Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90(3):744–761. doi: 10.1111/brv.12133. PubMed DOI

Nyffeler M, Pusey BJ. Fish predation by semi-aquatic spiders: A global pattern. PLoS ONE. 2014;9(6):e99459. doi: 10.1371/journal.pone.0099459. PubMed DOI PMC

Pekár S, Lubin Y. Prey and predatory behavior of two zodariid species (Araneae, Zodariidae) J. Arachnol. 2009;37(1):118–121. doi: 10.1636/ST08-45.1. DOI

Michálek O, Kuhn-Nentwig L, Pekár S. High specific efficiency of venom of two prey-specialized spiders. Toxins. 2019;11(12):687. doi: 10.3390/toxins11120687. PubMed DOI PMC

Modahl CM, Mrinalini, Frietze S, Mackessy SP. Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proc. R. Soc. B. 2018;285(1884):20181003. doi: 10.1098/rspb.2018.1003. PubMed DOI PMC

Harris RJ, Zdenek CN, Harrich D, Frank N, Fry BG. An appetite for destruction: Detecting prey-selective binding of α-neurotoxins in the venom of Afro-Asian elapids. Toxins. 2020;12(3):205. doi: 10.3390/toxins12030205. PubMed DOI PMC

Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon: X. 2020;8:100063. doi: 10.1016/j.toxcx.2020.100063. PubMed DOI PMC

Kuhn-Nentwig L, Schaller J, Nentwig W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae) Toxicon. 1994;32(3):287–302. doi: 10.1016/0041-0101(94)90082-5. PubMed DOI

Friedel T, Nentwig W. Immobilizing and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon. 1989;27(3):305–316. doi: 10.1016/0041-0101(89)90178-5. PubMed DOI

Eggs B, Wolff JO, Kuhn-Nentwig L, Gorb SN, Nentwig W. Hunting without a web: How lycosoid spiders subdue their prey. Ethology. 2015;121(12):1166–1177. doi: 10.1111/eth.12432. DOI

Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2015).

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Song L, Florea L. Rcorrector: Efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 2015;4(1):s13742–s14015. doi: 10.1186/s13742-015-0089-y. PubMed DOI PMC

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2011;29(7):644. doi: 10.1038/nbt.1883. PubMed DOI PMC

Gilbert, D. EvidentialGene: Evidence directed gene predictions for eukaryotes. Available online at: http://arthropods.eugenes.org/EvidentialGene/ (2010).

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):1–10. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness. In: Kollmar M, editor. Gene Prediction. Humana; 2019. pp. 227–245. PubMed

Haas, B. TransDecoder. Available online at: https://github.com/TransDecoder/TransDecoder (2015).

Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8(10):785–786. doi: 10.1038/nmeth.1701. PubMed DOI

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

UniProt The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(1):480–489. PubMed PMC

Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 2008;4(5):e1000069. doi: 10.1371/journal.pcbi.1000069. PubMed DOI PMC

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. Pfam: The protein families database. Nucleic Acids Res. 2014;42(1):222–230. doi: 10.1093/nar/gkt1223. PubMed DOI PMC

Wong ES, Hardy MC, Wood D, Bailey T, King GF. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS ONE. 2013;8(7):e66279. doi: 10.1371/journal.pone.0066279. PubMed DOI PMC

King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon. 2008;52(2):264–276. doi: 10.1016/j.toxicon.2008.05.020. PubMed DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: https://www.R-project.org/ (2019).

Venables, W. N. & Ripley, B. D. Random and mixed effects in Modern Applied Statistics with S 271–300 (Springer, New York, 2002).

Pekár S, Brabec M. Modern Analysis of Biological Data: Generalized Linear Models in R. Masaryk University Press; 2016.

Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15(2):1–11. doi: 10.18637/jss.v015.i02. DOI

Pekár S, Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124(2):86–93. doi: 10.1111/eth.12713. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...