Estimation of trophic niches in myrmecophagous spider predators
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32457437
PubMed Central
PMC7250852
DOI
10.1038/s41598-020-65623-8
PII: 10.1038/s41598-020-65623-8
Knihovny.cz E-resources
- MeSH
- DNA chemistry metabolism MeSH
- Ants genetics MeSH
- Spiders genetics physiology MeSH
- Polymerase Chain Reaction MeSH
- Predatory Behavior MeSH
- Cluster Analysis MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
Among spiders, taxonomically the most diversified group of terrestrial predators, only a few species are stenophagous and feed on ants. The levels of stenophagy and ant-specialisation vary among such species. To investigate whether stenophagy is only a result of a local specialisation both fundamental and realised trophic niches need to be estimated. Here we investigated trophic niches in three closely-related spider species from the family Gnaphosidae (Callilepis nocturna, C. schuszteri, Nomisia exornata) with different levels of myrmecophagy. Acceptance experiments were used to estimate fundamental trophic niches and molecular methods to estimate realised trophic niches. For the latter two PCR primer sets were used as these can affect the niche breadth estimates. The general invertebrate ZBJ primers were not appropriate for detecting ant DNA as they revealed very few prey types, therefore ant-specific primers were used. The cut-off threshold for erroneous MOTUs was identified as 0.005% of the total number of valid sequences, at individual predator level it was 0.05%. The fundamental trophic niche of Callilepis species included mainly ants, while that of N. exornata included many different prey types. The realised trophic niche in Callilepis species was similar to its fundamental niche but in N. exornata the fundamental niche was wider than realised niche. The results show that Callilepis species are ant-eating (specialised) stenophagous predators, catching mainly Formicinae ants, while N. exornata is an ant-eating euryphagous predator catching mainly Myrmicinae ants.
See more in PubMed
Hutchinson GE. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957;22:451–427.
Begon, M., Harper, J. L. & Townsend, C. R. Ecology: From individuals to ecosystems. (Blackwell Publishing, 2006).
Nyffeler M, Birkhofer K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. 2017;104(3-4):30. PubMed PMC
Pekár S, Coddington JA, Blackledge TA. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution. 2012;66(3):776–806. PubMed
Nentwig, W. The prey of spiders in Ecophysiology of Spiders (ed. Nentwig, W.) 249–263 (Springer‐Verlag, 1987).
Pekár S, Toft S. Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90(3):744–761. PubMed
Pekár, S., García, L. F. & Viera, C. Trophic niche and trophic adaptations of prey-specialised spiders of the Neotropics: a guide in Behavioural Ecology of Neotropical Spiders (eds. Viera, C. & Gonzaga, M. O.) 247–274 (Springer, 2017).
Sheppard SK, et al. Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol. Ecol. 2005;14:4461–4468. PubMed
Hosseini R, Schmidt O, Keller MA. Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: a polymerase chain reaction‐based method. Entomol. Exp. Appl. 2008;126(3):194–202.
Pompozzi G, García LF, Petráková L, Pekár S. Distinct feeding strategies of generalist and specialist spiders. Ecol. Entomol. 2019;44:129–139.
Symondson WOC. Molecular identification of prey in predator diets. Mol. Ecol. 2002;11:627–641. PubMed
King RA, Read DS, Traugott M, Symondson WOC. Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol. Ecol. 2008;17:947–963. PubMed
Pompanon F, et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 2012;21(8):1931–1950. PubMed
Meusnier I, et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics. 2008;9:214. PubMed PMC
Westheim H, Jarman SN. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front. Zool. 2008;5:12. PubMed PMC
Dunshea G. DNA-based diet analysis for any predator. PLoS ONE. 2009;4:e5252. PubMed PMC
Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ. Environmental barcoding: A next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE. 2011;6:e17497. PubMed PMC
Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Res. 2011;11(2):236–244. PubMed
Brown DS, et al. Dietary competition between the alien Asian Musk Shrew (Suncus murinus) and a re-introduced population of Telfair’s Skink (Leiolopisma telfairii) Mol. Ecol. 2014;23:3695–3705. PubMed
Clarke LJ, Soubrier J, Weyrich LS, Cooper A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Res. 2014;14:1160–1170. PubMed
Elbrecht V, Leese F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 2017;5:11.
Piñol J, Senar MA, Symondson WOC. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 2019;28(2):407–419. PubMed
Thomas AC, Jarman SN, Haman KH, Trites AW, Deagle BE. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 2014;23:3706–3718. PubMed
Alberdi A, Aizpurua O, Gilbert MTP, Bohman K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 2018;9(1):134–147.
Clare EL, Chain FJ, Littlefair JE, Cristescu ME. The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data. Genome. 2016;59:981–990. PubMed
Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009;24:110–117. PubMed
Shehzad W, et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 2012;21:1951–1965. PubMed
Dunshea G, et al. Pseudogenes and DNA-based diet analyses: a cautionary tale from a relatively well sampled predator-prey system. Bull. Entomol. Res. 2008;98:239–248. PubMed
Coissac E, Riaz T, Puillandre N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 2012;21:1834–1847. PubMed
Soyer, B. Contribution a l'étude éthologique et écologique des Araignées de la provence occidentale. I. Quelques Araignées myrmécophages des environs de Marseille. Bull. Mus. Hist. Nat. Marseille13, 51–55 (1943).
Heller, G. Zur Biologie der ameisenfressenden Spinne Callilepis nocturna Linnaeus 1758 (Aranea, Drassodidae) (Johannes Gutenberg-Universität, 1974).
Jakubavičiūtė E, Bergström U, Eklöf JS, Haenelm Q, Bourlat SJ. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem. PLoS ONE. 2017;12(10):e0186929. PubMed PMC
Michálek O, Petráková L, Pekár S. Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison. Ecol. Evol. 2017;7(8):2756–2766. PubMed PMC
Janicki J, Narula N, Ziegler M, Guénard B, Economo EP. Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecol. Inform. 2016;32:185–193.
Fellers JH. Daily and seasonal activity in woodland ants. Oecologia. 1989;78(1):69–76. PubMed
Cros S, Cerdá X, Retana J. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Ecoscience. 1997;4(3):269–278.
Líznarová E, Sentenská L, García LF, Pekár S, Viera C. Local trophic specialisation in a cosmopolitan spider (Araneae) Zoology. 2013;116(1):20–26. PubMed
Bohmann K, et al. Molecular diet analysis of two african free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE. 2011;6(6):e21441. PubMed PMC
Clare EL, Symondson WOC, Fenton MB. An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus) Mol. Ecol. 2013;23:3633–3647. PubMed
Gonsalves L, Bicknell B, Law B, Webb C, Monamy V. Mosquito consumption by insectivorous bats: does size matter? PLoS ONE. 2013;8(10):e77183. PubMed PMC
Hamad I, Delaporte E, Raoult D, Bittar F. Detection of termites and other insects consumed by African great apes using molecular fecal analysis. Sci. Rep. 2014;4:4478. PubMed PMC
Wirta HK, et al. Exposing the structure of an Arctic food web. Ecol. Evol. 2015;5(17):3842–3856. PubMed PMC
Piñol J, Mir G, Gomez-Polo G, Agustí N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Res. 2015;15:819–830. PubMed
Borovsky V, Borovsky R. Untersuchungen zur Ameisenfauna (Hymenoptera, Formicidae) des Großen Dürrenbachgrabens im Rosental (Kärnten) Carinthia II. 2016;206:379–406.
Borowiec L, Salata S. New records of ants (Hymenoptera: Formicidae) from southern Portugal. Acta Entomol. Sil. 2017;25:1–10.
Murray DC, Coghlan ML, Bunce M. From benchtop to desktop: important considerations when designing amplicon sequencing workflows. PLoS ONE. 2015;10(4):e0124671. PubMed PMC
Mata VA, et al. Female dietary bias towards large migratory moths in the European free-tailed bat (Tadarida teniotis) Biol. Letters. 2016;12(3):20150988. PubMed PMC
Borovsky V. Beobachtungen zur Räuber-Beute-Beziehung zwischen ‘Callilepis spp.’ (Araneae: Gnaphosidae) und ‘Camponotus vagus’ (Hymenoptera: Formicidae) Carinthia II. 2012;202:713–722.
Salgueiro J. Catálogo dos formicídeos de Portugal continental e ilhas. Boletín de la S.E.A. 2002;31:145–171.
de Groot AG, Laros I, Geisen S. Molecular identification of soil eukaryotes and focused approaches targeting protist and faunal groups using high-throughput meta-barcoding. methods in molecular biology. Methods Mol. Biol. 2016;1399:125–140. PubMed
Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized estimating equations. J. Stat. Softw. 2006;15(2):1–11.
Pekár S, Brabec M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology. 2018;124:86–93.
Hurlbert SH. The measurement of niche overlap and some relatives. Ecology. 1978;59(1):67–77.
Pekár S, Petráková L, Šedo O, Korenko S, Zdráhal Z. Trophic niche, capture efficiency, and venom profiles of six sympatric ant-eating spider species (Araneae: Zodariidae) Mol. Ecol. 2018;27:1053–1064. PubMed
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3(5):294–299. PubMed
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Rice P, Longden I, Bleasby A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000;16(6):276–277. PubMed
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2014;2:e593. PubMed PMC
Salipante SJ, et al. Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl. Environ. Microbiol. 2014;80(24):7583–7591. PubMed PMC
Shannon, C. E. & Weaver, W. The mathematical theory of communication (University of Illinois Press, 1949).
Magurran, A. E. Measuring biological diversity (Blackwell Publishing, 2004).