Effects of Anti-CD20 Antibody Therapy on Immune Cell Dynamics in Relapsing-Remitting Multiple Sclerosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Project number: MOMB157A_FVSP002
Novartis Deutschland GmbH
PubMed
40214505
PubMed Central
PMC11988809
DOI
10.3390/cells14070552
PII: cells14070552
Knihovny.cz E-zdroje
- Klíčová slova
- autoimmunity, immune reconstitution, multiple sclerosis, ocrelizumab, ofatumumab,
- MeSH
- antigeny CD20 * imunologie MeSH
- B-lymfocyty imunologie účinky léků MeSH
- buňky NK imunologie MeSH
- dospělí MeSH
- humanizované monoklonální protilátky * terapeutické užití farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- relabující-remitující roztroušená skleróza * imunologie farmakoterapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD20 * MeSH
- humanizované monoklonální protilátky * MeSH
- ocrelizumab MeSH Prohlížeč
- ofatumumab MeSH Prohlížeč
INTRODUCTION: The efficacy of anti-CD20 antibodies has significantly contributed to advancing our understanding of disease pathogenesis and improved treatment outcomes in relapsing-remitting multiple sclerosis (RRMS). A comprehensive analysis of the peripheral immune cell profile, combined with prospective clinical characterization, of RRMS patients treated with ocrelizumab (OCR) or ofatumumab (OFA) was performed to further understand immune reconstitution following B-cell depletion. METHODS: REBELLION-MS is a longitudinal analysis of RRMS patients treated with either OCR (n = 34) or OFA (n = 25). Analysis of B, T, natural killer (NK) and natural killer T (NKT) cells at baseline, month 1, and 12 was performed by multidimensional flow cytometry. Data were analyzed by conventional gating and unsupervised computational approaches. In parallel, different clinical parameters were longitudinally assessed. Twenty treatment-naïve age/sex-matched RRMS patients were included as the control cohort. RESULTS: B-cell depletion by OCR and OFA resulted in significant reductions in CD20+ T and B cells as well as B-cell subsets, alongside an expansion of CD5+CD19+CD20- B cells, while also elevating exhaustion markers (CTLA-4, PD-1, TIGIT, TIM-3) across T, B, NK, and NKT cells. Additionally, regulatory T-cell (TREG) numbers increased, especially in OCR-treated patients, and reductions in double-negative (CD3+CD4-CD8-) T cells (DN T cells) were observed, with these DN T cells having higher CD20 expression compared to CD4 or CD8 positive T cells. These immune profile changes correlated with clinical parameters, suggesting pathophysiological relevance in RRMS. CONCLUSIONS: Our interim data add weight to the argumentation that the exhaustion/activation markers, notably TIGIT, may be relevant to the pathogenesis of MS. In addition, we identify a potentially interesting increase in the expression of CD5+ on B cells. Finally, we identified a population of double-negative T cells (KLRG1+HLADR+, in particular) that is associated with MS activity and decreased with CD20 depletion.
Brain and Mind Center University of Sydney Sydney NSW 2050 Australia
Department of Neurology Medical University of Vienna 1090 Vienna Austria
Department of Neurology Palacky University 771 46 Olomouc Czech Republic
Zobrazit více v PubMed
Gelfand J.M., Cree B.A.C., Hauser S.L. Ocrelizumab and Other CD20(+) B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics. 2017;14:835–841. doi: 10.1007/s13311-017-0557-4. PubMed DOI PMC
Hauser S.L., Bar-Or A., Cohen J.A., Comi G., Correale J., Coyle P.K., Cross A.H., de Seze J., Leppert D., Montalban X., et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N. Engl. J. Med. 2020;383:546–557. doi: 10.1056/NEJMoa1917246. PubMed DOI
Hauser S.L., Bar-Or A., Comi G., Giovannoni G., Hartung H.-P., Hemmer B., Lublin F., Montalban X., Rammohan K.W., Selmaj K., et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017;376:221–234. doi: 10.1056/NEJMoa1601277. PubMed DOI
Frisch E.S., Pretzsch R., Weber M.S. A Milestone in Multiple Sclerosis Therapy: Monoclonal Antibodies Against CD20—Yet Progress Continues. Neurotherapeutics. 2021;18:1602–1622. doi: 10.1007/s13311-021-01048-z. PubMed DOI PMC
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Willison A. 2024. [(accessed on 27 March 2025)]. Available online: https://app.biorender.com/citation/6710dafd1080fddf8320d27d.
Räuber S., Korsen M., Huntemann N., Rolfes L., Müntefering T., Dobelmann V., Hermann A.M., Kölsche T., von WnuckLipinski K., Schroeter C.B., et al. Immune response to SARS-CoV-2 vaccination in relation to peripheral immune cell profiles among patients with multiple sclerosis receiving ocrelizumab. J. Neurol. Neurosurg. Psychiatry. 2022;93:978–985. doi: 10.1136/jnnp-2021-328197. PubMed DOI PMC
[(accessed on 27 March 2025)]. Available online: www.omiq.ai.
Harrington, B. et al., 2004–2005. Inkscape, a Vector Graphics Software, to Create the Figures. [(accessed on 27 March 2025)]. Available online: http://www.inkscape.org/
Curran C., Vaitaitis G., Waid D., Volmer T., Alverez E., Wagner D.H. Ocrevus reduces TH40 cells, a biomarker of systemic inflammation, in relapsing multiple sclerosis (RMS) and in progressive multiple sclerosis (PMS) J. Neuroimmunol. 2022;374:578008. doi: 10.1016/j.jneuroim.2022.578008. PubMed DOI PMC
D’amico E., Zanghì A., Fantozzi R., Centonze D., Avolio C. Ofatumumab and Early Immunological Cells Subset Characterization in Naïve Relapsing Multiple Sclerosis Patients: A Real-World Study. Curr. Neuropharmacol. 2023;21:2563–2566. PubMed PMC
Garcia A., Dugast E., Shah S., Morille J., Lebrun-Frenay C., Thouvenot E., De Sèze J., Le Page E., Vukusic S., Maurousset A., et al. Immune Profiling Reveals the T-Cell Effect of Ocrelizumab in Early Relapsing-Remitting Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023;10:e200091. doi: 10.1212/NXI.0000000000200091. PubMed DOI PMC
Mathias A., Pantazou V., Perriot S., Canales M., Jones S., Oberholster L., Moulin M., Fenwick C., Bernard-Valnet R., Théaudin M. Ocrelizumab Impairs the Phenotype and Function of Memory CD8(+) T Cells: A 1-Year Longitudinal Study in Patients with Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023;10:e200084. doi: 10.1212/NXI.0000000000200084. PubMed DOI PMC
Shinoda K., Li R., Rezk A., Mexhitaj I., Patterson K.R., Kakara M., Zuroff L., Bennett J.L., von Büdingen H.-C., Carruthers R., et al. Differential effects of anti-CD20 therapy on CD4 and CD8 T cells and implication of CD20-expressing CD8 T cells in MS disease activity. Proc. Natl. Acad. Sci. USA. 2023;120:e2207291120. PubMed PMC
Dalloul A. CD5: A safeguard against autoimmunity and a shield for cancer cells. Autoimmun. Rev. 2009;8:349–353. doi: 10.1016/j.autrev.2008.11.007. PubMed DOI
Ahmed R., Omidian Z., Donner T., Hamad A.R.A. Hiding in plain sight: Time to unlock autoimmune clues in human CD5+ B cells by using nextgen technology. Discov. Med. 2018;26:79–83. PubMed PMC
Westerga J., Timens W. Immunohistological analysis of human fetal lymph nodes. Scand. J. Immunol. 1989;29:103–112. PubMed
Antin J.H., Emerson S.G., Martin P., Gadol N., Ault K.A. Leu-1+ (CD5+) B cells. A major lymphoid subpopulation in human fetal spleen: Phenotypic and functional studies. J. Immunol. 1986;136:505–510. doi: 10.4049/jimmunol.136.2.505. PubMed DOI
Brennan F., Platerzyberk C., Maini, Feldmann M. Coordinate expansion of ’fetal type’ lymphocytes (TCR gamma delta+T and CD5+B) in rheumatoid arthritis and primary Sjogren’s syndrome. Clin. Exp. Immunol. 1989;77:175–178. PubMed PMC
Yanaba K., Bouaziz J.-D., Haas K.M., Poe J.C., Fujimoto M., Tedder T.F. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity. 2008;28:639–650. PubMed
Niino M., Hirotani M., Miyazaki Y., Sasaki H. Memory and naive B-cell subsets in patients with multiple sclerosis. Neurosci. Lett. 2009;464:74–78. PubMed
Niino M., Fukazawa T., Minami N., Amino I., Tashiro J., Fujiki N., Doi S., Kikuchi S. CD5-positive B cell subsets in secondary progressive multiple sclerosis. Neurosci. Lett. 2012;523:56–61. PubMed
Seidi O.A., Semra Y.K., Sharief M.K. Expression of CD5 on B lymphocytes correlates with disease activity in patients with multiple sclerosis. J. Neuroimmunol. 2002;133:205–210. PubMed
Villar L.M., Sádaba M.C., Roldán E., Masjuan J., González-Porqué P., Villarrubia N., Espiño M., García-Trujillo J.A., Bootello A., Álvarez-Cermeño J.C. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Investig. 2005;115:187–194. PubMed PMC
Correale J., Mix E., Olsson T., Kostulas V., Fredrikson S., Höjeberg B., Link H. CD5+ B cells and CD4-8-T cells in neuroimmunological diseases. J. Neuroimmunol. 1991;32:123–132. doi: 10.1016/0165-5728(91)90004-Q. PubMed DOI
Watanabe R., Ishiura N., Nakashima H., Kuwano Y., Okochi H., Tamaki K., Sato S., Tedder T.F., Fujimoto M. Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 2010;184:4801–4809. PubMed PMC
Noel P.J., Boise L.H., Thompson C.B. Regulation of T cell activation by CD28 and CTLA4. Adv. Exp. Med. Biol. 1996;406:209–217. PubMed
Huang Y.-H., Zhu C., Kondo Y., Anderson A.C., Gandhi A., Russell A.F., Dougan S.K., Petersen B.-S., Melum E., Pertel T., et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature. 2015;517:386–390. doi: 10.1038/nature13848. PubMed DOI PMC
Schade H., Sen S., Neff C.P., Freed B.M., Gao D., Gutman J.A., Palmer B.E. Programmed Death 1 Expression on CD4 + T Cells Predicts Mortality after Allogeneic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2016;22:2172–2179. doi: 10.1016/j.bbmt.2016.08.007. PubMed DOI
Davies D., Kamdar S., Woolf R., Zlatareva I., Iannitto M.L., Morton C., Haque Y., Martin H., Biswas D., Ndagire S. PD-1 defines a distinct, functional, tissue-adapted state in Vdelta1(+) T cells with implications for cancer immunotherapy. Nat. Cancer. 2024;5:420–432. PubMed PMC
Canaday D.H., Parker K.E., Aung H., Chen H.E., Nunez-Medina D., Burant C.J. Age-dependent changes in the expression of regulatory cell surface ligands in activated human T-cells. BMC Immunol. 2013;14:45. doi: 10.1186/1471-2172-14-45. PubMed DOI PMC
Mohammadzadeh A., Rad I.A., Ahmadi-Salmasi B. CTLA-4, PD-1 and TIM-3 expression predominantly downregulated in MS patients. J. Neuroimmunol. 2018;323:105–108. PubMed
Asashima H., Axisa P.-P., Pham T.H.G., Longbrake E.E., Ruff W.E., Lele N., Cohen I., Raddassi K., Sumida T.S., Hafler D.A. Impaired TIGIT expression on B cells drives circulating follicular helper T cell expansion in multiple sclerosis. J. Clin. Investig. 2022;132:e156254. PubMed PMC
Trabattoni D., Saresella M., Pacei M., Marventano I., Mendozzi L., Rovaris M., Caputo D., Borelli M., Clerici M. Costimulatory pathways in multiple sclerosis: Distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J. Immunol. 2009;183:4984–4993. doi: 10.4049/jimmunol.0901038. PubMed DOI
Yang L., Anderson D.E., Kuchroo J., Hafler D.A. Lack of TIM-3 immunoregulation in multiple sclerosis. J. Immunol. 2008;180:4409–4414. doi: 10.4049/jimmunol.180.7.4409. PubMed DOI
Koguchi K., Anderson D.E., Yang L., O′Connor K.C., Kuchroo V.K., Hafler D.A. Dysregulated T cell expression of TIM3 in multiple sclerosis. J. Exp. Med. 2006;203:1413–1418. doi: 10.1084/jem.20060210. PubMed DOI PMC
Khademi M., Illés Z., Gielen A.W., Marta M., Takazawa N., Baecher-Allan C., Brundin L., Hannerz J., Martin C., Harris R.A., et al. T Cell Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J. Immunol. 2004;172:7169–7176. doi: 10.4049/jimmunol.172.11.7169. PubMed DOI
Garcia C.R., Jayswal R., Adams V., Anthony L.B., Villano J.L. Multiple sclerosis outcomes after cancer immunotherapy. Clin. Transl. Oncol. 2019;21:1336–1342. doi: 10.1007/s12094-019-02060-8. PubMed DOI PMC
Gerdes L.A., Held K., Beltrán E., Berking C., Prinz J.C., Junker A., Tietze J.K., Ertl-Wagner B., Straube A., Kümpfel T., et al. CTLA4 as Immunological Checkpoint in the Development of Multiple Sclerosis. Ann. Neurol. 2016;80:294–300. doi: 10.1002/ana.24715. PubMed DOI PMC
Khoury S.J., Rochon J., Ding L., Byron M., Ryker K., Tosta P., Gao W., Freedman M.S., Arnold D.L., Sayre P.H., et al. ACCLAIM: A randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult. Scler. J. 2017;23:686–695. doi: 10.1177/1352458516662727. PubMed DOI PMC
Schuh E., Berer K., Mulazzani M., Feil K., Meinl I., Lahm H., Krane M., Lange R., Pfannes K., Subklewe M., et al. Features of Human CD3+CD20+ T Cells. J. Immunol. 2016;197:1111–1117. doi: 10.4049/jimmunol.1600089. PubMed DOI
von Essen M.R., Talbot J., Hansen R.H.H., Chow H.H., Lundell H., Siebner H.R., Sellebjerg F. Intrathecal CD8(+)CD20(+) T Cells in Primary Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023;10:e200140. PubMed PMC
von Essen M.R., Ammitzbøll C., Hansen R.H., Petersen E.R., McWilliam O., Marquart H.V., Damm P., Sellebjerg F. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142:120–132. doi: 10.1093/brain/awy301. PubMed DOI
Howlett-Prieto Q., Feng X., Kramer J.F., Kramer K.J., Houston T.W., Reder A.T. Anti-CD20 therapy corrects a CD8 regulatory T cell deficit in multiple sclerosis. Mult. Scler. 2021;27:2170–2179. doi: 10.1177/13524585211003301. PubMed DOI
Lovett-Racke A.E., Gormley M., Liu Y., Yang Y., Graham C., Wray S., Racke M.K., Shubin R., Twyman C., Alvarez E., et al. B cell depletion with ublituximab reshapes the T cell profile in multiple sclerosis patients. J. Neuroimmunol. 2019;332:187–197. doi: 10.1016/j.jneuroim.2019.04.017. PubMed DOI
Velikkakam T., Gollob K.J., Dutra W.O. Double-negative T cells: Setting the stage for disease control or progression. Immunology. 2021;165:371–385. doi: 10.1111/imm.13441. PubMed DOI PMC
Wu Z., Zheng Y., Sheng J., Han Y., Yang Y., Pan H., Yao J. CD3(+)CD4(-)CD8(-) (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer. Front. Immunol. 2022;13:816005. doi: 10.3389/fimmu.2022.816005. PubMed DOI PMC
Crispín J.C., Oukka M., Bayliss G., Cohen R.A., Van Beek C.A., Stillman I.E., Kyttaris V.C., Juang Y.T., Tsokos G.C. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 2008;181:8761–8766. doi: 10.4049/jimmunol.181.12.8761. PubMed DOI PMC
Shivakumar S., Tsokos G.C., Datta S.K. T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J. Immunol. 1989;143:103–112. doi: 10.4049/jimmunol.143.1.103. PubMed DOI
Sieling P.A., Porcelli S.A., Duong B.T., Spada F., Bloom B.R., Diamond B., Hahn B.H. Human Double-Negative T Cells in Systemic Lupus Erythematosus Provide Help for IgG and Are Restricted by CD1c. J. Immunol. 2000;165:5338–5344. doi: 10.4049/jimmunol.165.9.5338. PubMed DOI
ClinicalTrials.gov
NCT06586177