Imagine beyond: recent breakthroughs and next challenges in mammary gland biology and breast cancer research
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37450065
PubMed Central
PMC10349020
DOI
10.1007/s10911-023-09544-y
PII: 10.1007/s10911-023-09544-y
Knihovny.cz E-zdroje
- Klíčová slova
- Breast cancer heterogeneity, Lineage tracing, Model systems, Prevention and early detection, Single cell analyses, Treatment and recurrence,
- MeSH
- biologie MeSH
- lidé MeSH
- mléčné žlázy lidské * MeSH
- nádory prsu * MeSH
- prsy MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
On 8 December 2022 the organizing committee of the European Network for Breast Development and Cancer labs (ENBDC) held its fifth annual Think Tank meeting in Amsterdam, the Netherlands. Here, we embraced the opportunity to look back to identify the most prominent breakthroughs of the past ten years and to reflect on the main challenges that lie ahead for our field in the years to come. The outcomes of these discussions are presented in this position paper, in the hope that it will serve as a summary of the current state of affairs in mammary gland biology and breast cancer research for early career researchers and other newcomers in the field, and as inspiration for scientists and clinicians to move the field forward.
Cell Biology and Biophysics Department EMBL Heidelberg Germany
Department of Cancer Genetics Institute for Cancer Research Oslo University Hospital Oslo Norway
INSERM U1312 University of Bordeaux 33076 Bordeaux France
Molit Institute of Personalized Medicine Heilbronn Germany
Oncobell Bellvitge Biomedical Research Institute L'Hospitalet de Llobregat Barcelona Spain
Zobrazit více v PubMed
Rosen JM, Roarty K. Paracrine signaling in mammary gland development: what can we learn about intratumoral heterogeneity? Breast Cancer Research. 2014;16:202. doi: 10.1186/bcr3610. PubMed DOI PMC
Brown SB, Hankinson SE. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids. 2015;99:8–10. doi: 10.1016/j.steroids.2014.12.013. PubMed DOI
Schneider J, Martín-Gutiérrez S, Tresguerres JA, García-Velasco JA. Circulating estradiol defines the tumor phenotype in menopausal breast cancer patients. Maturitas. 2009;64:43–45. doi: 10.1016/j.maturitas.2009.07.001. PubMed DOI
Obradović MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux MM, et al. Glucocorticoids promote breast cancer metastasis. Nature. 2019;567:540–544. doi: 10.1038/s41586-019-1019-4. PubMed DOI
Giulianelli S, Lamb CA, Lanari C. Progesterone receptors in normal breast development and breast cancer. Essays in Biochemistry. 2021;65:951–969. doi: 10.1042/EBC20200163. PubMed DOI
Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer. 2020;6:47. doi: 10.1038/s41523-020-00190-9. PubMed DOI PMC
Noureddine LM, Trédan O, Hussein N, Badran B, Le Romancer M, Poulard C. Glucocorticoid Receptor: A Multifaceted Actor in Breast Cancer. International Journal of Molecular Sciences. 2021;22:4446. doi: 10.3390/ijms22094446. PubMed DOI PMC
Font-Díaz J, Jiménez-Panizo A, Caelles C, Vivanco M dM, Pérez P, Aranda A, et al. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development. Semin Cancer Biol. 2021;73:58–75. PubMed
Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. The New England Journal of Medicine. 2017;377:1836–1846. doi: 10.1056/NEJMoa1701830. PubMed DOI PMC
Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–88. doi: 10.1038/nature04372. PubMed DOI
Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439:993–997. doi: 10.1038/nature04496. PubMed DOI
Hannezo E, Scheele CLGJ, Moad M, Drogo N, Heer R, Sampogna RV, et al. A Unifying Theory of Branching Morphogenesis. Cell. 2017;171:242–255.e27. doi: 10.1016/j.cell.2017.08.026. PubMed DOI PMC
Simões BM, Piva M, Iriondo O, Comaills V, López-Ruiz JA, Zabalza I, et al. Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Research and Treatment. 2011;129:23–35. doi: 10.1007/s10549-010-1169-4. PubMed DOI
Shehata M, van Amerongen R, Zeeman AL, Giraddi RR, Stingl J. The influence of tamoxifen on normal mouse mammary gland homeostasis. Breast Cancer Research. 2014;16:411. doi: 10.1186/s13058-014-0411-0. PubMed DOI PMC
Rios AC, Fu NY, Lindeman GJ, Visvader JE. In situ identification of bipotent stem cells in the mammary gland. Nature. 2014;506:322–327. doi: 10.1038/nature12948. PubMed DOI
Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479:189–193. doi: 10.1038/nature10573. PubMed DOI
van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11:387–400. doi: 10.1016/j.stem.2012.05.023. PubMed DOI
Šale S, Lafkas D, Artavanis-Tsakonas S. Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nature Cell Biology. 2013;15:451–460. doi: 10.1038/ncb2725. PubMed DOI PMC
Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. The Journal of Cell Biology. 2013;203:47–56. doi: 10.1083/jcb.201307046. PubMed DOI PMC
Wuidart A, Ousset M, Rulands S, Simons BD, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes & Development. 2016;30:1261–1277. doi: 10.1101/gad.280057.116. PubMed DOI PMC
Scheele CLGJ, Hannezo E, Muraro MJ, Zomer A, Langedijk NSM, Van Oudenaarden A, et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature. 2017;542:313–317. doi: 10.1038/nature21046. PubMed DOI PMC
Wang D, Cai C, Dong X, Yu QC, Zhang XO, Yang L, et al. Identification of multipotent mammary stemcells by protein C receptor expression. Nature. 2015;517:81–84. doi: 10.1038/nature13851. PubMed DOI
Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nature Communications. 2018;9:2028. doi: 10.1038/s41467-018-04334-1. PubMed DOI PMC
Kumar B, Prasad M, Bhat-Nakshatri P, Anjanappa M, Kalra M, Marino N, et al. Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade. Cancer Research. 2018;78:5107–5123. doi: 10.1158/1538-7445.AM2018-5107. PubMed DOI PMC
Wang C, Christin JR, Oktay MH, Guo W. Lineage-Biased Stem Cells Maintain Estrogen-Receptor-Positive and -Negative Mouse Mammary Luminal Lineages. Cell Reports. 2017;18:2825–2835. doi: 10.1016/j.celrep.2017.02.071. PubMed DOI PMC
Van Keymeulen A, Fioramonti M, Centonze A, Bouvencourt G, Achouri Y, Blanpain C. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage. Cell Reports. 2017;20:1525–1532. doi: 10.1016/j.celrep.2017.07.066. PubMed DOI PMC
Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Watson CJ. Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells. Development. 2018;145:dev164079. PubMed PMC
Davis FM, Lloyd-Lewis B, Harris OB, Kozar S, Winton DJ, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nature Communications. 2016;7:13053. doi: 10.1038/ncomms13053. PubMed DOI PMC
Rodilla V, Dasti A, Huyghe M, Lafkas D, Laurent C, Reyal F, et al. Luminal progenitors restrict their lineage potential during mammary gland development. PLoS Biology. 2015;13:e1002069. doi: 10.1371/journal.pbio.1002069. PubMed DOI PMC
Centonze A, Lin S, Tika E, Sifrim A, Fioramonti M, Malfait M, et al. Heterotypic cell–cell communication regulates glandular stem cell multipotency. Nature. 2020;584(7822):608–13. PubMed PMC
Benítez S, Cordero A, Santamaría PG, Redondo-Pedraza J, Rocha AS, Collado-Solé A, et al. RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Developmental Cell. 2021;56:1727–1741.e7. doi: 10.1016/j.devcel.2021.04.022. PubMed DOI PMC
Koren S, Reavie L, Couto JP, De Silva D, Stadler MB, Roloff T, et al. PIK3CAH1047R induces multipotency and multi-lineage mammary tumours. Nature. 2015;525:114–118. doi: 10.1038/nature14669. PubMed DOI
Van Keymeulen A, Lee MY, Ousset M, Brohée S, Rorive S, Giraddi RR, et al. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour heterogeneity. Nature. 2015;525:119–123. doi: 10.1038/nature14665. PubMed DOI
Lilja AM, Rodilla V, Huyghe M, Hannezo E, Landragin C, Renaud O, et al. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nature Cell Biology. 2018;20:677–687. doi: 10.1038/s41556-018-0108-1. PubMed DOI PMC
Fridriksdottir AJ, Villadsen R, Morsing M, Klitgaard MC, Kim J, Petersen OW, et al. Proof of region-specific multipotent progenitors in human breast epithelia. Proceedings of the National academy of Sciences of the United States of America. 2017;114:E10102–E10111. PubMed PMC
Cereser B, Jansen M, Austin E, Elia G, McFarlane T, van Deurzen CHM, et al. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells. The Journal of Pathology. 2018;244:61–70. doi: 10.1002/path.4989. PubMed DOI PMC
Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A, et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Research. 2012;72:2879–2888. doi: 10.1158/0008-5472.CAN-12-0044. PubMed DOI
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014;2:78–91. doi: 10.1016/j.stemcr.2013.11.009. PubMed DOI PMC
Iriondo O, Rábano M, Domenici G, Carlevaris O, López-Ruiz JA, Zabalza I, et al. Distinct breast cancer stem/progenitor cell populations require either HIF1α or loss of PHD3 to expand under hypoxic conditions. Oncotarget. 2015;6:31721–31739. doi: 10.18632/oncotarget.5564. PubMed DOI PMC
Zomer A, Ellenbroek SIJ, Ritsma L, Beerling E, Vrisekoop N, Van Rheenen J. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells. 2013;31:602–606. doi: 10.1002/stem.1296. PubMed DOI PMC
Dekoninck S, Blanpain C. Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology. 2019;21:18–24. doi: 10.1038/s41556-018-0237-6. PubMed DOI PMC
Meyer AR, Brown ME, McGrath PS, Dempsey PJ. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration. Cellular and Molecular Gastroenterology and Hepatology. 2022;13:843–856. doi: 10.1016/j.jcmgh.2021.12.005. PubMed DOI PMC
Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. Luminal cells are favored as the cell of origin for prostate cancer. Cell Reports. 2014;8:1339–1346. doi: 10.1016/j.celrep.2014.08.002. PubMed DOI PMC
Urbanus J, Cosgrove J, Beltman J, Elhanati Y, Moral R de A, Conrad C, et al. DRAG in situ barcoding reveals an increased number of HSPCs contributing to myelopoiesis with age. bioRxiv; 2022. 2022.12.06.519273. Available from: https://www.biorxiv.org/content/10.1101/2022.12.06.519273v1. [cited 2023 Jan 29]. PubMed DOI PMC
Kong S, Li R, Tian Y, Zhang Y, Lu Y, Ou Q, et al. Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Frontiers in Genetics. 2022;13:1100016. doi: 10.3389/fgene.2022.1100016. PubMed DOI PMC
Haghverdi L, Ludwig LS. Single-cell multi-omics and lineage tracing to dissect cell fate decision-making. Stem Cell Reports. 2023;18:13–25. doi: 10.1016/j.stemcr.2022.12.003. PubMed DOI PMC
Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC, et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nature Communications. 2017;8:2128. doi: 10.1038/s41467-017-02001-5. PubMed DOI PMC
Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nature Communications. 2017;8:1627. doi: 10.1038/s41467-017-01560-x. PubMed DOI PMC
Dravis C, Chung CY, Lytle NK, Herrera-Valdez J, Luna G, Trejo CL, et al. Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell. 2018;34:466–482.e6. doi: 10.1016/j.ccell.2018.08.001. PubMed DOI PMC
Chung CY, Ma Z, Dravis C, Preissl S, Poirion O, Luna G, et al. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Reports. 2019;29:495–510.e6. doi: 10.1016/j.celrep.2019.08.089. PubMed DOI PMC
Giraddi RR, Chung C-Y, Heinz RE, Perou CM, Wahl GM, Spike BT. Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Reports. 2018;24:1653–1666.e7. doi: 10.1016/j.celrep.2018.07.025. PubMed DOI PMC
Nyquist SK, Gao P, Haining TKJ, Retchin MR, Golan Y, Drake RS, et al. Cellular and transcriptional diversity over the course of human lactation. Proc Natl Acad Sci U S A. 2022;119:e2121720119. doi: 10.1073/pnas.2121720119. PubMed DOI PMC
Twigger A-J, Engelbrecht LK, Bach K, Schultz-Pernice I, Pensa S, Stenning J, et al. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. Nature Communications. 2022;13:562. doi: 10.1038/s41467-021-27895-0. PubMed DOI PMC
Pal B, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, et al. A single-cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. The EMBO Journal. 2021;40:e107333. doi: 10.15252/embj.2020107333. PubMed DOI PMC
Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell. 2018;33:463–479.e10. doi: 10.1016/j.ccell.2018.01.011. PubMed DOI
Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell. 2021;39:1578–1593.e8. doi: 10.1016/j.ccell.2021.09.010. PubMed DOI
Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell. 2018;174:1293–1308.e36. doi: 10.1016/j.cell.2018.05.060. PubMed DOI PMC
Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nature Cell Biology. 2020;22:310–320. doi: 10.1038/s41556-020-0477-0. PubMed DOI
Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell. 2018;173:879–893.e13. doi: 10.1016/j.cell.2018.03.041. PubMed DOI PMC
Chen W, Morabito SJ, Kessenbrock K, Enver T, Meyer KB, Teschendorff AE. Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Commun Biol. 2019;2:306. doi: 10.1038/s42003-019-0554-8. PubMed DOI PMC
Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell. 2020;181:236–249. doi: 10.1016/j.cell.2020.03.053. PubMed DOI PMC
Gillis S, Roth A. PyClone-VI: scalable inference of clonal population structures using whole genome data. BMC Bioinformatics. 2020;21:571. doi: 10.1186/s12859-020-03919-2. PubMed DOI PMC
Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand challenges in single-cell data science. Genome Biology. 2020;21:31. doi: 10.1186/s13059-020-1926-6. PubMed DOI PMC
Navin NE. The first five years of single-cell cancer genomics and beyond. Genome Research. 2015;25:1499–1507. doi: 10.1101/gr.191098.115. PubMed DOI PMC
Gray GK, Li CM-C, Rosenbluth JM, Selfors LM, Girnius N, Lin J-R, et al. A human breast atlas integrating single-cell proteomics and transcriptomics. Dev Cell. 2022;57:1400–1420.e7. PubMed PMC
van Amerongen R. Behind the Scenes of the Human Breast Cell Atlas Project. Journal of Mammary Gland Biology and Neoplasia. 2021;26:67–70. doi: 10.1007/s10911-021-09482-7. PubMed DOI PMC
Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Reviews. 2016;35:547–573. doi: 10.1007/s10555-016-9653-x. PubMed DOI PMC
Guillen KP, Fujita M, Butterfield AJ, Scherer SD, Bailey MH, Chu Z, et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer. 2022;3:232–250. doi: 10.1038/s43018-022-00337-6. PubMed DOI PMC
Woo XY, Giordano J, Srivastava A, Zhao Z-M, Lloyd MW, de Bruijn R, et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics. 2021;53:86–99. doi: 10.1038/s41588-020-00750-6. PubMed DOI PMC
Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews. Cancer. 2017;17:254–268. doi: 10.1038/nrc.2016.140. PubMed DOI
Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery. 2014;4:998–1013. doi: 10.1158/2159-8290.CD-14-0001. PubMed DOI PMC
Fiche M, Scabia V, Aouad P, Battista L, Treboux A, Stravodimou A, et al. Intraductal patient-derived xenografts of estrogen receptor α-positive breast cancer recapitulate the histopathological spectrum and metastatic potential of human lesions. The Journal of Pathology. 2019;247:287–292. doi: 10.1002/path.5200. PubMed DOI PMC
PDCM Finder - The open global research platform for Patient Derived Cancer Models. Available from: https://www.cancermodels.org/. [cited 2023 Feb 5]. PubMed PMC
Breast Cancer Now Tissue Bank [Internet]. Breast Cancer Now. 2020. Available from: https://breastcancernow.org/breast-cancer-research/breast-cancer-now-tissue-bank. [cited 2023 Feb 5].
Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nature Reviews. Clinical Oncology. 2022;19:719–732. doi: 10.1038/s41571-022-00682-6. PubMed DOI
Stripecke R, Münz C, Schuringa JJ, Bissig K-D, Soper B, Meeham T, et al. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine. 2020;12:e8662. doi: 10.15252/emmm.201708662. PubMed DOI PMC
Pfefferle AD, Herschkowitz JI, Usary J, Harrell JC, Spike BT, Adams JR, et al. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology. 2013;14:R125. doi: 10.1186/gb-2013-14-11-r125. PubMed DOI PMC
Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. Journal of Mammary Gland Biology and Neoplasia. 1999;4:105–122. doi: 10.1023/A:1018712905244. PubMed DOI
Bartfeld S. Realizing the potential of organoids—an interview with Hans Clevers. Journal of Molecular Medicine. 2021;99:443–447. doi: 10.1007/s00109-020-02025-3. PubMed DOI PMC
Simian M, Bissell MJ. Organoids: A historical perspective of thinking in three dimensions. The Journal of Cell Biology. 2016;216:31–40. doi: 10.1083/jcb.201610056. PubMed DOI PMC
Fata JE, Mori H, Ewald AJ, Zhang H, Yao E, Werb Z, et al. The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Developmental Biology. 2007;306:193–207. doi: 10.1016/j.ydbio.2007.03.013. PubMed DOI PMC
Ewald AJ. Isolation of mouse mammary organoids for long-term time-lapse imaging. Cold Spring Harbor Protocols. 2013;8:130–133. PubMed
Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis. Developmental Cell. 2008;14:570–581. doi: 10.1016/j.devcel.2008.03.003. PubMed DOI PMC
Jardé T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, et al. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun. 2016;7:13207 PubMed PMC
Wang J, Song W, Yang R, Li C, Wu T, Dong XB, et al. Endothelial Wnts control mammary epithelial patterning via fibroblast signaling. Cell Reports. 2021;34:108897. doi: 10.1016/j.celrep.2021.108897. PubMed DOI
Yip HYK, Papa A. Generation and functional characterization of murine mammary organoids. STAR Protocols. 2021;2:100765. doi: 10.1016/j.xpro.2021.100765. PubMed DOI PMC
Cui J, Guo W. Establishment and long-term culture of mouse mammary stem cell organoids and breast tumor organoids. STAR Protoc. 2021;2:100577. doi: 10.1016/j.xpro.2021.100577. PubMed DOI PMC
Wrenn ED, Moore BM, Greenwood E, McBirney M, Cheung KJ. Optimal, Large-Scale Propagation of Mouse Mammary Tumor Organoids. Journal of Mammary Gland Biology and Neoplasia. 2020;25:337–350. doi: 10.1007/s10911-020-09464-1. PubMed DOI PMC
Jamieson PR, Dekkers JF, Rios AC, Fu NY, Lindeman GJ, Visvader JE. Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development. 2017;144:1065–1071. PubMed
Caruso M, Huang S, Mourao L, Scheele CLGJ. A Mammary Organoid Model to Study Branching Morphogenesis. Frontiers in Physiology. 2022;13. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2022.826107. [cited 2023 Feb 5]. PubMed DOI PMC
Sahu S, Albaugh ME, Martin BK, Patel NL, Riffle L, Mackem S, et al. Growth factor dependency in mammary organoids regulates ductal morphogenesis during organ regeneration. Scientific Reports. 2022;12:7200. doi: 10.1038/s41598-022-11224-6. PubMed DOI PMC
Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary Mammary Organoid Model of Lactation and Involution. Frontiers in Cell and Developmental Biology. 2020;8. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2020.00068. [cited 2023 Feb 5]. PubMed DOI PMC
Charifou E, Sumbal J, Koledova Z, Li H, Chiche A. A Robust Mammary Organoid System to Model Lactation and Involution-like Processes. Bio Protoc. 2021;11:e3996. PubMed PMC
Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CM-C, Boedicker M, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun. 2020;11:1711. PubMed PMC
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373–386.e10. doi: 10.1016/j.cell.2017.11.010. PubMed DOI
Dekkers JF, van Vliet EJ, Sachs N, Rosenbluth JM, Kopper O, Rebel HG, et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nature Protocols. 2021;16:1936–1965. doi: 10.1038/s41596-020-00474-1. PubMed DOI PMC
Symmans WF, Liu J, Knowles DM, Inghirami G. Breast cancer heterogeneity: evaluation of clonality in primary and metastatic lesions. Human Pathology. 1995;26:210–216. doi: 10.1016/0046-8177(95)90039-X. PubMed DOI
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–752. doi: 10.1038/35021093. PubMed DOI
Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–10874. doi: 10.1073/pnas.191367098. PubMed DOI PMC
Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology. 2009;27:1160–1167. doi: 10.1200/JCO.2008.18.1370. PubMed DOI PMC
van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6. PubMed
van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. PubMed
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–352. doi: 10.1038/nature10983. PubMed DOI PMC
Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54. doi: 10.1038/nature17676. PubMed DOI PMC
Degasperi A, Zou X, Amarante TD, Martinez-Martinez A, Koh GCC, Dias JML, et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science. 2022;376:science.abl9283. PubMed PMC
Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–404. doi: 10.1038/nature11017. PubMed DOI PMC
Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412. PubMed DOI PMC
Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163:506–519. doi: 10.1016/j.cell.2015.09.033. PubMed DOI PMC
Wallden B, Storhoff J, Nielsen T, Dowidar N, Schaper C, Ferree S, et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Medical Genomics. 2015;8:54. doi: 10.1186/s12920-015-0129-6. PubMed DOI PMC
Krijgsman O, Roepman P, Zwart W, Carroll JS, Tian S, De Snoo FA, et al. A diagnostic gene profile for molecular subtyping of breast cancer associated with treatment response. Breast Cancer Research and Treatment. 2012;133:37–47. doi: 10.1007/s10549-011-1683-z. PubMed DOI
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. The New England Journal of Medicine. 2004;351:2817–2826. doi: 10.1056/NEJMoa041588. PubMed DOI
Tian S, Roepman P, van’t Veer LJ, Bernards R, de Snoo F, Glas AM. Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer. Biomarker Insights. 2010;2010:129–38. PubMed PMC
Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med. 2016;375:717–29. PubMed
Ng CKY, Bidard F-C, Piscuoglio S, Geyer FC, Lim RS, de Bruijn I, et al. Genetic Heterogeneity in Therapy-Naïve Synchronous Primary Breast Cancers and Their Metastases. Clinical Cancer Research. 2017;23:4402–4415. doi: 10.1158/1078-0432.CCR-16-3115. PubMed DOI PMC
Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell. 2018;172:205–217.e12. doi: 10.1016/j.cell.2017.12.007. PubMed DOI PMC
Funnell T, O’Flanagan CH, Williams MJ, McPherson A, McKinney S, Kabeer F, et al. Single-cell genomic variation induced by mutational processes in cancer. Nature. 2022;612:106–115. doi: 10.1038/s41586-022-05249-0. PubMed DOI PMC
Lomakin A, Svedlund J, Strell C, Gataric M, Shmatko A, Rukhovich G, et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature. 2022;611:594–602. doi: 10.1038/s41586-022-05425-2. PubMed DOI PMC
Griffiths JI, Chen J, Cosgrove PA, O’Dea A, Sharma P, Ma C, et al. Serial single-cell genomics reveals convergent subclonal evolution of resistance as early-stage breast cancer patients progress on endocrine plus CDK4/6 therapy. Nat Cancer. 2021;2:658–671. doi: 10.1038/s43018-021-00215-7. PubMed DOI PMC
Koren S, Bentires-Alj M. Breast Tumor Heterogeneity: Source of Fitness Hurdle for Therapy. Molecular Cell. 2015;60:537–546. doi: 10.1016/j.molcel.2015.10.031. PubMed DOI
Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nature Reviews. Cancer. 2002;2:101–112. doi: 10.1038/nrc721. PubMed DOI
Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nature Communications. 2021;12:1786. doi: 10.1038/s41467-021-22024-3. PubMed DOI PMC
Bradley R, Braybrooke J, Gray R, Hills RK, Liu Z, Pan H, et al. Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: a patient-level meta-analysis of 7030 women from four randomised trials. The lancet Oncology. 2022;23:382–392. doi: 10.1016/S1470-2045(21)00758-0. PubMed DOI PMC
Howell A. Tamoxifen resistance and adjuvant hormone therapy. Breast Cancer Research. 2005;7:S19. doi: 10.1186/bcr1223. DOI
Yin L, Duan J-J, Bian X-W, Yu S-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Research. 2020;22:61. doi: 10.1186/s13058-020-01296-5. PubMed DOI PMC
Mateo J, Lord CJ, Serra V, Tutt A, Balmaña J, Castroviejo-Bermejo M, et al. A decade of clinical development of PARP inhibitors in perspective. Annals of Oncology. 2019;30:1437–1447. doi: 10.1093/annonc/mdz192. PubMed DOI PMC
Pommier Y, O’Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8:362ps17. PubMed
Shah M, Nunes MR, Stearns V. CDK4/6 Inhibitors: Game Changers in the Management of Hormone Receptor-Positive Advanced Breast Cancer? Oncology (Williston Park, N.Y.) 2018;32:216–222. PubMed PMC
Scheidemann ER, Shajahan-Haq AN. Resistance to CDK4/6 Inhibitors in Estrogen Receptor-Positive Breast Cancer. International Journal of Molecular Sciences. 2021;22:12292. doi: 10.3390/ijms222212292. PubMed DOI PMC
Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. The New England Journal of Medicine. 2018;379:2108–2121. doi: 10.1056/NEJMoa1809615. PubMed DOI
Emens LA, Adams S, Barrios CH, Diéras V, Iwata H, Loi S, et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Annals of Oncology. 2021;32:983–993. doi: 10.1016/j.annonc.2021.05.355. PubMed DOI
Røssevold AH, Andresen NK, Bjerre CA, Gilje B, Jakobsen EH, Raj SX, et al. Atezolizumab plus anthracycline-based chemotherapy in metastatic triple-negative breast cancer: the randomized, double-blind phase 2b ALICE trial. Nature Medicine. 2022;28:2573–2583. doi: 10.1038/s41591-022-02126-1. PubMed DOI PMC
Tolba MF, Elghazaly H, Bousoik E, Elmazar MMA, Tolaney SM. Novel combinatorial strategies for boosting the efficacy of immune checkpoint inhibitors in advanced breast cancers. Clinical and Translational Oncology. 2021;23:1979–1994. doi: 10.1007/s12094-021-02613-w. PubMed DOI
Najminejad Z, Dehghani F, Mirzaei Y, Mer AH, Saghi SA, Abdolvahab MH, et al. Clinical perspective: Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Molecular Therapy. 2023;S1525–0016(23):00140–145. PubMed PMC
Molinelli C, Jacobs F, Marchiò C, Pitto F, Cosso M, Spinaci S, et al. HER2-Low Breast Cancer: Where Are We? Breast Care (Basel) 2022;17:533–545. doi: 10.1159/000527391. PubMed DOI PMC
Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. The New England Journal of Medicine. 2022;387:9–20. doi: 10.1056/NEJMoa2203690. PubMed DOI PMC
Khadela A, Soni S, Shah AC, Pandya AJ, Megha K, Kothari N, et al. Unveiling the antibody-drug conjugates portfolio in battling Triple-negative breast cancer: Therapeutic trends and Future horizon. Medical Oncology. 2022;40:25. doi: 10.1007/s12032-022-01884-9. PubMed DOI
Shastry M, Jacob S, Rugo HS, Hamilton E. Antibody-drug conjugates targeting TROP-2: Clinical development in metastatic breast cancer. Breast. 2022;66:169–177. doi: 10.1016/j.breast.2022.10.007. PubMed DOI PMC
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer. 2022;8:494–505. doi: 10.1016/j.trecan.2022.02.007. PubMed DOI
Bivona TG, Doebele RC. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nature Medicine. 2016;22:472–478. doi: 10.1038/nm.4091. PubMed DOI PMC
Ahmad A. Pathways to breast cancer recurrence. ISRN Oncol. 2013;2013:290568. PubMed PMC
Blatter S, Rottenberg S. Minimal residual disease in cancer therapy–Small things make all the difference. Drug Resist Updat. 2015;21–22:1–10. doi: 10.1016/j.drup.2015.08.003. PubMed DOI
Havas KM, Milchevskaya V, Radic K, Alladin A, Kafkia E, Garcia M, et al. Metabolic shifts in residual breast cancer drive tumor recurrence. J Clin Invest. 2017;127:2091–2105. doi: 10.1172/JCI89914. PubMed DOI PMC
Correia AL, Guimaraes JC, Auf der Maur P, De Silva D, Trefny MP, Okamoto R, et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature. 2021;594:566–71. PubMed
Brooks MD, Burness ML, Wicha MS. Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell. 2015;17:260–271. doi: 10.1016/j.stem.2015.08.014. PubMed DOI PMC
Cable J, Pei D, Reid LM, Wang XW, Bhatia S, Karras P, et al. Cancer stem cells: advances in biology and clinical translation-a Keystone Symposia report. Annals of the New York Academy of Sciences. 2021;1506:142–163. doi: 10.1111/nyas.14719. PubMed DOI PMC
Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute (1988) 2006;98:1777–1785. doi: 10.1093/jnci/djj495. PubMed DOI
Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute (1988) 2008;100:672–679. doi: 10.1093/jnci/djn123. PubMed DOI
Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Molecular Medicine. 2014;6:66–79. doi: 10.1002/emmm.201303411. PubMed DOI PMC
Radic Shechter K, Kafkia E, Zirngibl K, Gawrzak S, Alladin A, Machado D, et al. Metabolic memory underlying minimal residual disease in breast cancer. Molecular Systems Biology. 2021;17:e10141. doi: 10.15252/msb.202010141. PubMed DOI PMC
Eyre R, Alférez DG, Santiago-Gómez A, Spence K, McConnell JC, Hart C, et al. Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nature Communications. 2019;10:5016. doi: 10.1038/s41467-019-12807-0. PubMed DOI PMC
Fabre M, Ferrer C, Domínguez-Hormaetxe S, Bockorny B, Murias L, Seifert O, et al. OMTX705, a Novel FAP-Targeting ADC Demonstrates Activity in Chemotherapy and Pembrolizumab-Resistant Solid Tumor Models. Clinical Cancer Research. 2020;26:3420–3430. doi: 10.1158/1078-0432.CCR-19-2238. PubMed DOI
Baumann Z, Auf der Maur P, Bentires-Alj M. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation. EMBO Mol Med. 2022;14:e14283. PubMed PMC
Hosseini H, Obradović MMS, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540:552–558. doi: 10.1038/nature20785. PubMed DOI PMC
Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588–592. doi: 10.1038/nature20609. PubMed DOI PMC
Rahrmann EP, Shorthouse D, Jassim A, Hu LP, Ortiz M, Mahler-Araujo B, et al. The NALCN channel regulates metastasis and nonmalignant cell dissemination. Nature Genetics. 2022;54:1827–1838. doi: 10.1038/s41588-022-01182-0. PubMed DOI PMC
Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell. 2019;176:98–112.e14. doi: 10.1016/j.cell.2018.11.046. PubMed DOI PMC
Diamantopoulou Z, Castro-Giner F, Schwab FD, Foerster C, Saini M, Budinjas S, et al. The metastatic spread of breast cancer accelerates during sleep. Nature. 2022;607:156–162. doi: 10.1038/s41586-022-04875-y. PubMed DOI
Cardiff RD, Jindal S, Treuting PM, Going JJ, Gusterson B, Thompson HJ. Mammary Gland. In: Treuting P, Dintzis S, Montine KS, editors. Comparative Anatomy and Histology. 2nd ed. Academic Press. 2018. p. 487–509.
Bu W, Li Y. Intraductal Injection of Lentivirus Vectors for Stably Introducing Genes into Rat Mammary Epithelial Cells in Vivo. Journal of Mammary Gland Biology and Neoplasia. 2020;25:389–396. doi: 10.1007/s10911-020-09469-w. PubMed DOI PMC
Li Q, Seo J-H, Stranger B, McKenna A, Pe’er I, Laframboise T, et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell. 2013;152:633–41. PubMed PMC
Mostafavi H, Spence JP, Naqvi S, Pritchard JK. Limited overlap of eQTLs and GWAS hits due to systematic differences in discovery. bioRxiv; 2022. 2022.05.07.491045. Available from: https://www.biorxiv.org/content/10.1101/2022.05.07.491045v1. [cited 2023 Feb 18]. DOI
Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. A framework for transcriptome-wide association studies in breast cancer in diverse study populations. Genome Biology. 2020;21:42. doi: 10.1186/s13059-020-1942-6. PubMed DOI PMC
Wiggins GAR, Black MA, Dunbier A, Merriman TR, Pearson JF, Walker LC. Variable expression quantitative trait loci analysis of breast cancer risk variants. Scientific Reports. 2021;11:7192. doi: 10.1038/s41598-021-86690-5. PubMed DOI PMC
Beesley J, Sivakumaran H, Moradi Marjaneh M, Shi W, Hillman KM, Kaufmann S, et al. eQTL Colocalization Analyses Identify NTN4 as a Candidate Breast Cancer Risk Gene. American Journal of Human Genetics. 2020;107:778–787. doi: 10.1016/j.ajhg.2020.08.006. PubMed DOI PMC
Ferreira MA, Gamazon ER, Al-Ejeh F, Aittomäki K, Andrulis IL, Anton-Culver H, et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications. 2019;10:1741. doi: 10.1038/s41467-018-08053-5. PubMed DOI PMC
Tzeng A, Sangwan N, Jia M, Liu C-C, Keslar KS, Downs-Kelly E, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Medicine. 2021;13:60. doi: 10.1186/s13073-021-00874-2. PubMed DOI PMC
Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185:1356–1372.e26. doi: 10.1016/j.cell.2022.02.027. PubMed DOI
Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880–6. PubMed PMC
Messal H, Scheele C, Lips E, Lutz C, Hutten S, Kristel P, et al. Abstract IA012: Mammary epithelial architecture modulates field cancerization. Cancer Prev Res. 2022;15:IA012.
Langille E, Al-Zahrani KN, Ma Z, Liang M, Uuskula-Reimand L, Espin R, et al. Loss of Epigenetic Regulation Disrupts Lineage Integrity, Induces Aberrant Alveogenesis, and Promotes Breast Cancer. Cancer Discovery. 2022;12:2930–2953. doi: 10.1158/2159-8290.CD-21-0865. PubMed DOI PMC
Geyer FC, Lacroix-Triki M, Colombo P-E, Patani N, Gauthier A, Natrajan R, et al. Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology. 2012;60:E115–130. doi: 10.1111/j.1365-2559.2012.04207.x. PubMed DOI
Abuhadra N, Stecklein S, Sharma P, Moulder S. Early-stage Triple-negative Breast Cancer: Time to Optimize Personalized Strategies. The Oncologist. 2022;27:30–39. doi: 10.1093/oncolo/oyab003. PubMed DOI PMC
Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. The New England Journal of Medicine. 2018;379:111–121. doi: 10.1056/NEJMoa1804710. PubMed DOI PMC
Vliek SB, Hilbers FS, Jager A, Retèl VP, Bueno de Mesquita JM, Drukker CA, et al. Ten-year follow-up of the observational RASTER study, prospective evaluation of the 70-gene signature in ER-positive, HER2-negative, node-negative, early breast cancer. Eur J Cancer. 2022;175:169–79. PubMed
Piccart M, van ’t Veer LJ, Poncet C, Lopes Cardozo JMN, Delaloge S, Pierga J-Y, et al. 70-gene signature as an aid for treatment decisions in early breast cancer: updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncol. 2021;22:476–88. PubMed
López-Ruiz JA, Mieza JA, Zabalza I, Vivanco M d M. Comparison of Genomic Profiling Data with Clinical Parameters: Implications for Breast Cancer Prognosis. Cancers. 2022;14:4197. PubMed PMC
Tadros AB, Wen HY, Morrow M. Breast Cancers of Special Histologic Subtypes Are Biologically Diverse. Annals of Surgical Oncology. 2018;25:3158–3164. doi: 10.1245/s10434-018-6687-z. PubMed DOI PMC
Cost-effectiveness analysis of the 70-gene signature compared with clinical assessment in breast cancer based on a randomised controlled trial - European Journal of Cancer. Available from: https://www.ejcancer.com/article/S0959-8049(20)30381-6/fulltext. [cited 2023 Feb 18]. PubMed
Vodicka E, Nonvignon J, Antwi-Agyei KO, Bawa J, Clark A, Pecenka C, et al. The projected cost-effectiveness and budget impact of HPV vaccine introduction in Ghana. Vaccine. 2022;40:A85–93. doi: 10.1016/j.vaccine.2021.07.027. PubMed DOI
Priyadarshini M, Prabhu VS, Snedecor SJ, Corman S, Kuter BJ, Nwankwo C, et al. Economic Value of Lost Productivity Attributable to Human Papillomavirus Cancer Mortality in the United States. Front Public Health. 2021;8. Available from: https://www.frontiersin.org/articles/10.3389/fpubh.2020.624092. [cited 2023 Feb 18]. PubMed DOI PMC
Termrungruanglert W, Khemapech N, Vasuratna A, Havanond P, Deebukkham P, Kulkarni AS, et al. The epidemiologic and economic impact of a quadrivalent human papillomavirus vaccine in Thailand. PLoS One1. 2021;16:e0245894. doi: 10.1371/journal.pone.0245894. PubMed DOI PMC
Schoustra SM, op ’t Root TJPM, Pompe van Meerdervoort RP, Alink L, Steenbergen W, Manohar S. Pendant breast immobilization and positioning in photoacoustic tomographic imaging. Photoacoustics. 2021;21:100238. PubMed PMC
Bentires-Alj M, Rajan A, van Harten W, van Luenen HGAM, Kubicek S, Andersen JB, et al. Stimulating translational research: several European life science institutions put their heads together. Trends in Molecular Medicine. 2015;21:525–527. doi: 10.1016/j.molmed.2015.07.002. PubMed DOI
Cruciger QV, Pathak S, Cailleau R. Human breast carcinomas: marker chromosomes involving 1q in seven cases. Cytogenetics and Cell Genetics. 1976;17:231–235. doi: 10.1159/000130716. PubMed DOI
Narayan A, Ji W, Zhang XY, Marrogi A, Graff JR, Baylin SB, et al. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. International Journal of Cancer. 1998;77:833–838. doi: 10.1002/(SICI)1097-0215(19980911)77:6<833::AID-IJC6>3.0.CO;2-V. PubMed DOI
Hoda SA, Brogi E, Koerner FC, Rosen PP. Rosen’s Breast Pathology. 4th ed. Wolters Kluwer. 2014. ISBN-13: 978-1451176537.
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121:2750–2767. doi: 10.1172/JCI45014. PubMed DOI PMC
Lehmann BD, Colaprico A, Silva TC, Chen J, An H, Ban Y, et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nature Communications. 2021;12:6276. doi: 10.1038/s41467-021-26502-6. PubMed DOI PMC
Gusterson B, Eaves CJ. Basal-like Breast Cancers: From Pathology to Biology and Back Again. Stem Cell Reports. 2018;10:1676–1686. doi: 10.1016/j.stemcr.2018.04.023. PubMed DOI PMC
Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, et al. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. Journal of Cell Science. 1989;94(Pt 3):403–413. doi: 10.1242/jcs.94.3.403. PubMed DOI
Santagata S, Thakkar A, Ergonul A, Wang B, Woo T, Hu R, et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. The Journal of Clinical Investigation. 2014;124:859–870. doi: 10.1172/JCI70941. PubMed DOI PMC
Domenici G, Aurrekoetxea-Rodríguez I, Simões BM, Rábano M, Lee SY, Millán JS, et al. A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene. 2019;38:3151–3169. doi: 10.1038/s41388-018-0656-7. PubMed DOI PMC
Huang Q, Garrett A, Bose S, Blocker S, Rios AC, Clevers H, et al. The frontier of live tissue imaging across space and time. Cell Stem Cell. 2021;28:603–622. doi: 10.1016/j.stem.2021.02.010. PubMed DOI PMC
Smith BA, Welm AL, Welm BE. On the shoulders of giants: a historical perspective of unique experimental methods in mammary gland research. Seminars in Cell & Developmental Biology. 2012;23:583–590. doi: 10.1016/j.semcdb.2012.03.005. PubMed DOI PMC
Cardiff RD, Kenney N. Mouse mammary tumor biology: a short history. Advances in Cancer Research. 2007;98:53–116. doi: 10.1016/S0065-230X(06)98003-8. PubMed DOI
Home page [Internet]. Cancer Research Horizons. 2023. Available from: https://www.cancerresearchhorizons.com/home-page. [cited 2023 Feb 19].