Primary Mammary Organoid Model of Lactation and Involution

. 2020 ; 8 () : 68. [epub] 20200319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32266252

Mammary gland development occurs mainly after birth and is composed of three successive stages: puberty, pregnancy and lactation, and involution. These developmental stages are associated with major tissue remodeling, including extensive changes in mammary epithelium, as well as surrounding stroma. Three-dimensional (3D) mammary organoid culture has become an important tool in mammary gland biology and enabled invaluable discoveries on pubertal mammary branching morphogenesis and breast cancer. However, a suitable 3D organoid model recapitulating key aspects of lactation and involution has been missing. Here, we describe a robust and straightforward mouse mammary organoid system modeling lactation and involution-like process, which can be applied to study mechanisms of physiological mammary gland lactation and involution as well as pregnancy-associated breast cancer.

Zobrazit více v PubMed

Ackland M. L., Ward J., Ackland C. M., Greaves M., Walker M. (2003). Extracellular matrix induces formation of organoids and changes in cell surface morphology in cultured human breast carcinoma cells PMC42-LA. In Vitro Cell. Dev. Biol. Anim. 39 428–433. 10.1290/1543-706X2003039 PubMed DOI

Adriance M. C., Inman J. L., Petersen O. W., Bissell M. J. (2005). Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 7 190–197. 10.1186/bcr1286 PubMed DOI PMC

Aoki M., Wartenberg P., Grünewald R., Phillipps H. R., Wyatt A., Grattan D. R., et al. (2019). Widespread Cell-specific prolactin receptor expression in multiple murine organs. Endocrinology 160 2587–2599. 10.1210/en.2019-2234 PubMed DOI

Artegiani B., Clevers H. (2018). Use and application of 3D-organoid technology. Hum. Mol. Genet. 27 R99–R107. 10.1093/hmg/ddy187 PubMed DOI

Brisken C., O’Malley B. (2010). Hormone action in the mammary gland. Cold Spring Harb. Perspect. Biol. 2:a003178. 10.1101/cshperspect.a003178 PubMed DOI PMC

Brisken C., Rajaram R. D. (2006). Alveolar and lactogenic differentiation. J. Mammary Gland Biol. Neoplasia 11 239–248. 10.1007/s10911-006-9026-9020 PubMed DOI

Campbell J. J., Botos L.-A., Sargeant T. J., Davidenko N., Cameron R. E., Watson C. J. (2014). A 3-D in vitro co-culture model of mammary gland involution. Integr. Biol. Quant. Biosci. Nano Macro. 6 618–626. 10.1039/c3ib40257f PubMed DOI

Ewald A. J., Brenot A., Duong M., Chan B. S., Werb Z. (2008). Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14 570–581. 10.1016/j.devcel.2008.03.003 PubMed DOI PMC

Freestone D., Cater M. A., Ackland M. L., Paterson D., Howard D. L., de Jonge M. D., et al. (2014). Copper and lactational hormones influence the CTR1 copper transporter in PMC42-LA mammary epithelial cell culture models. J. Nutr. Biochem. 25 377–387. 10.1016/j.jnutbio.2013.11.011 PubMed DOI

Froemke R. C., Carcea I. (2017). “Chapter 13 - oxytocin and brain plasticity,” in Principles of Gender-Specific Medicine, ed. Legato M. J. (San Diego: Academic Press; ), 161–182. 10.1016/B978-0-12-803506-1.00037-1 DOI

Goodwin K., Nelson C. M. (2018). Myoepithelial crowd control of cancer cells. J. Cell Biol. 217 3319–3321. 10.1083/jcb.201808097 PubMed DOI PMC

Green K. A., Lund L. R. (2005). ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays News Rev. Mol. Cell. Dev. Biol. 27 894–903. 10.1002/bies.20281 PubMed DOI

Haaksma C. J., Schwartz R. J., Tomasek J. J. (2011). Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking smooth muscle alpha-actin. Biol. Reprod. 85 13–21. 10.1095/biolreprod.110.090639 PubMed DOI PMC

Hennighausen L., Robinson G. W. (2005). Information networks in the mammary gland. Nat. Rev. Mol. Cell Biol. 6 715–725. 10.1038/nrm1714 PubMed DOI

Huch M., Koo B.-K. (2015). Modeling mouse and human development using organoid cultures. Development 142 3113–3125. 10.1242/dev.118570 PubMed DOI

Huebner R. J., Neumann N. M., Ewald A. J. (2016). Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration. Development 143 983–993. 10.1242/dev.127944 PubMed DOI PMC

Hughes K., Watson C. J. (2012). The spectrum of STAT functions in mammary gland development. JAKSTAT 1 151–158. 10.4161/jkst.19691 PubMed DOI PMC

Jamieson P. R., Dekkers J. F., Rios A. C., Fu N. Y., Lindeman G. J., Visvader J. E. (2017). Derivation of a robust mouse mammary organoid system for studying tissue dynamics. Development 144 1065–1071. 10.1242/dev.145045 PubMed DOI

Jena M. K., Jaswal S., Kumar S., Mohanty A. K. (2019). Molecular mechanism of mammary gland involution: an update. Dev. Biol. 445 145–155. 10.1016/j.ydbio.2018.11.002 PubMed DOI

Kent J. C., Prime D. K., Garbin C. P. (2012). Principles for Maintaining or Increasing Breast Milk Production. J. Obstet. Gynecol. Neonatal Nurs. 41 114–121. 10.1111/j.1552-6909.2011.01313.x PubMed DOI

Kim S.-H., Wu S.-Y., Baek J.-I., Choi S. Y., Su Y., Flynn C. R., et al. (2015). A post-developmental genetic screen for zebrafish models of inherited liver disease. PLoS One 10:e0125980. 10.1371/journal.pone.0125980 PubMed DOI PMC

Knight C. H., Maltz E., Docherty A. H. (1986). Milk yield and composition in mice: effects of litter size and lactation number. Comp. Biochem. Physiol. A 84 127–133. 10.1016/0300-9629(86)90054-x PubMed DOI

Koledova Z. (2017a). 3D cell culture: an introduction. Methods Mol. Biol. 1612 1–11. 10.1007/978-1-4939-7021-6-1 PubMed DOI

Koledova Z. (2017b). 3D coculture of mammary organoids with fibrospheres: a model for studying epithelial-stromal interactions during mammary branching morphogenesis. Methods Mol. Biol. 1612 107–124. 10.1007/978-1-4939-7021-6-8 PubMed DOI

König B., Markl H. (1987). Maternal care in house mice. Behav. Ecol. Sociobiol. 20 1–9. 10.1007/BF00292161 DOI

Koopman R., Schaart G., Hesselink M. K. (2001). Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem. Cell Biol. 116 63–68. 10.1007/s004180100297 PubMed DOI

Kritikou E. A., Sharkey A., Abell K., Came P. J., Anderson E., Clarkson R. W. E., et al. (2003). A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130 3459–3468. 10.1242/dev.00578 PubMed DOI

Linnemann J. R., Miura H., Meixner L. K., Irmler M., Kloos U. J., Hirschi B., et al. (2015). Quantification of regenerative potential in primary human mammary epithelial cells. Development 142 3239–3251. 10.1242/dev.123554 PubMed DOI PMC

Lu P., Ewald A. J., Martin G. R., Werb Z. (2008). Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol. 321 77–87. 10.1016/j.ydbio.2008.06.005 PubMed DOI PMC

Lund L. R., Rømer J., Thomasset N., Solberg H., Pyke C., Bissell M. J., et al. (1996). Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Dev. Camb. Engl. 122 181–193. PubMed PMC

Macias H., Hinck L. (2012). Mammary gland development. Wiley Interdiscip. Rev. Dev. Biol. 1 533–557. 10.1002/wdev.35 PubMed DOI PMC

Mroue R., Inman J., Mott J., Budunova I., Bissell M. J. (2015). Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland. Dev. Biol. 399 15–26. 10.1016/j.ydbio.2014.11.026 PubMed DOI PMC

Neumann N. M., Perrone M. C., Veldhuis J. H., Huebner R. J., Zhan H., Devreotes P. N., et al. (2018). Coordination of receptor tyrosine kinase signaling and interfacial tension dynamics drives radial intercalation and tube elongation. Dev. Cell 45 67–82.e6. 10.1016/j.devcel.2018.03.011 PubMed DOI PMC

Nguyen A. V., Pollard J. W. (2000). Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127 3107–3118. PubMed

Nishimori K., Young L. J., Guo Q., Wang Z., Insel T. R., Matzuk M. M. (1996). Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc. Natl. Acad. Sci. U.S.A. 93 11699–11704. 10.1073/pnas.93.21.11699 PubMed DOI PMC

Nommsen-Rivers L. A. (2016). Does insulin explain the relation between maternal obesity and poor lactation outcomes? an overview of the literature. Adv. Nutr. 7 407–414. 10.3945/an.115.011007 PubMed DOI PMC

Olsen C. G., Gordon R. E. (1990). Breast disorders in nursing mothers. Am. Fam. Phys. 41 1509–1516. PubMed

Parsa S., Ramasamy S. K., De Langhe S., Gupte V. V., Haigh J. J., Medina D., et al. (2008). Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev. Biol. 317 121–131. 10.1016/j.ydbio.2008.02.014 PubMed DOI

Qu Y., Han B., Gao B., Bose S., Gong Y., Wawrowsky K., et al. (2017). Differentiation of human induced pluripotent stem cells to mammary-like organoids. Stem Cell Rep. 8 205–215. 10.1016/j.stemcr.2016.12.023 PubMed DOI PMC

Raymond K., Cagnet S., Kreft M., Janssen H., Sonnenberg A., Glukhova M. A. (2011). Control of mammary myoepithelial cell contractile function by α3β1 integrin signalling. EMBO J. 30 1896–1906. 10.1038/emboj.2011.113 PubMed DOI PMC

Schedin P. (2006). Pregnancy-associated breast cancer and metastasis. Nat. Rev. Cancer 6 281–291. 10.1038/nrc1839 PubMed DOI

Shamir E. R., Ewald A. J. (2014). Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15 647–664. 10.1038/nrm3873 PubMed DOI PMC

Simian M., Hirai Y., Navre M., Werb Z., Lochter A., Bissell M. J. (2001). The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128 3117–3131. PubMed PMC

Sirka O. K., Shamir E. R., Ewald A. J. (2018). Myoepithelial cells are a dynamic barrier to epithelial dissemination. J. Cell Biol. 217 3368–3381. 10.1083/jcb.201802144 PubMed DOI PMC

Stein T., Salomonis N., Gusterson B. A. (2007). Mammary gland involution as a multi-step process. J. Mammary Gland Biol. Neoplasia 12 25–35. 10.1007/s10911-007-9035-9037 PubMed DOI

Sternlicht M. D. (2006). Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8:201. 10.1186/bcr1368 PubMed DOI PMC

Stewart T. A., Hughes K., Stevenson A. J., Marino N., Ju A. L., Morehead M., et al. (2019). Mammary mechanobiology: PIEZO1 mechanically-activated ion channels in lactation and involution. bioRxiv [Preprint], 10.1101/649038 PubMed DOI

Sumbal J., Koledova Z. (2019). FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 146:dev185306. 10.1242/dev.185306 PubMed DOI

Vorherr H., Vorherr U. F., Solomon S. (1978). Contamination of prolactin preparations by antidiuretic hormone and oxytocin. Am. J. Physiol. 234 F318–F324. 10.1152/ajprenal.1978.234.4.F318 PubMed DOI

Watson C. J. (2006). Key stages in mammary gland development - involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8:203. 10.1186/bcr1401 PubMed DOI PMC

Xian W., Schwertfeger K. L., Vargo-Gogola T., Rosen J. M. (2005). Pleiotropic effects of FGFR1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. J. Cell Biol. 171 663–673. 10.1083/jcb.200505098 PubMed DOI PMC

Zwick R. K., Rudolph M. C., Shook B. A., Holtrup B., Roth E., Lei V., et al. (2018). Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation. Nat. Commun. 9:3592. 10.1038/s41467-018-05911-5910 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...