Transcriptional regulators of GntR family in Streptomyces coelicolor A3(2): analysis in silico and in vivo of YtrA subfamily

. 2016 May ; 61 (3) : 209-20. [epub] 20151003

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26433722
Odkazy

PubMed 26433722
DOI 10.1007/s12223-015-0426-7
PII: 10.1007/s12223-015-0426-7
Knihovny.cz E-zdroje

Transcriptional factors of the GntR family regulate numerous physiological and morphological processes in response to the nutrient state of bacterial cells. The number of GntR transcriptional factors in genomes of soil-dwelling actinomycetes is one of the highest among bacteria, reflecting both the large size of their chromosomes and the complex ecological niche that they occupy. However, very little is known about the roles of GntRs in actinomycete biology. Here, we analyzed the genome of model actinomycete, Streptomyces coelicolor A3(2), in an attempt to gain new insights into the function of GntR family. All 56 GntR proteins of M145 strain were classified into FadR, HutC, MocR, YtrA, and DevA subfamilies according to their secondary structure. We then checked for the presence of GntR orthologs in six other sequenced Streptomyces and one Kitasatospora genomes, revealing that 12 GntRs were conserved in all analyzed strains. Genomic analysis of the less studied YtrA type regulators revealed 160 sequences present in 88 members of Coriobacteridae, Rubrobacteridae, and Actinobacteridae subclasses. These proteins form seven dense clusters on the consensus phylogenetic tree and their genes are usually co-located with the genes for transport proteins. Probable operator sites were identified for orthologous groups of Sco0823 and Sco3812 proteins. All S. coelicolor YtrA-like regulatory genes (SCO0823, SCO1728, SCO3812) were analyzed at transcriptional level, knocked out, and introduced on moderate copy number plasmid in M145 strain. Also, gene SCO0824, a part of putative SCO0823 operon, was studied. Results of these experiments are discussed here.

Zobrazit více v PubMed

Biol Direct. 2012 Apr 17;7:12 PubMed

Nat Protoc. 2009;4(3):363-71 PubMed

Adv Appl Microbiol. 2009;69:1-22 PubMed

EMBO Rep. 2008 Jul;9(7):670-5 PubMed

Nat Prod Rep. 2009 Nov;26(11):1362-84 PubMed

Appl Microbiol Biotechnol. 2008 Aug;80(2):277-86 PubMed

Front Biosci. 2005 Jan 01;10:462-77 PubMed

Appl Microbiol Biotechnol. 2013 Jan;97(1):351-9 PubMed

FEMS Microbiol Lett. 2013 Apr;341(2):96-105 PubMed

Tuberculosis (Edinb). 2007 May;87(3):242-7 PubMed

FEMS Microbiol Rev. 2012 Jan;36(1):206-31 PubMed

BMC Res Notes. 2011 Mar 23;4:78 PubMed

Genome Res. 2004 May;14 (5):893-900 PubMed

J Biol Chem. 2002 Apr 12;277(15):12507-15 PubMed

Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 PubMed

Nucleic Acids Res. 2010 Jul;38(Web Server issue):W299-307 PubMed

Folia Microbiol (Praha). 2009;54(2):91-6 PubMed

BMC Genomics. 2007 Aug 23;8:289 PubMed

J Bacteriol. 2006 Nov;188(21):7477-87 PubMed

J Bacteriol. 2011 Oct;193(20):5793-801 PubMed

J Biotechnol. 2013 Dec;168(4):367-72 PubMed

Nat Prod Rep. 2011 Jul;28(7):1311-33 PubMed

Microbiology. 2011 Apr;157(Pt 4):1240-9 PubMed

Nucleic Acids Res. 2010 Jul;38(Web Server issue):W563-8 PubMed

Comput Biol Chem. 2003 Oct;27(4-5):511-9 PubMed

Microbiol Mol Biol Rev. 2013 Mar;77(1):112-43 PubMed

J Ind Microbiol Biotechnol. 2010 Jun;37(6):559-66 PubMed

J Bacteriol. 2000 Mar;182(5):1243-50 PubMed

Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 PubMed

Adv Appl Microbiol. 2004;54:107-28 PubMed

Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201 PubMed

Open Biol. 2013 Oct 23;3(10):130121 PubMed

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 PubMed

Appl Environ Microbiol. 2011 Aug;77(15):5370-83 PubMed

Microbiology. 2001 Aug;147(Pt 8):2103-12 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...