New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26437436
PubMed Central
PMC4693238
DOI
10.3390/biom5042338
PII: biom5042338
Knihovny.cz E-zdroje
- Klíčová slova
- ADAR, Alu elements, RNA editing, cancer, deaminase domain, dsRBDs,
- MeSH
- adenosindeaminasa metabolismus MeSH
- dvouvláknová RNA metabolismus MeSH
- editace RNA genetika MeSH
- lidé MeSH
- proteiny vázající RNA metabolismus MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adenosindeaminasa MeSH
- dvouvláknová RNA MeSH
- proteiny vázající RNA MeSH
The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.
Zobrazit více v PubMed
Machnicka M.A., Milanowska K., Osman Oglou O., Purta E., Kurkowska M., Olchowik A., Januszewski W., Kalinowski S., Dunin-Horkawicz S., Rother K.M., et al. Modomics: A database of RNA modification pathways—2013 update. Nucleic Acids Res. 2013;41:D262–D267. doi: 10.1093/nar/gks1007. PubMed DOI PMC
Benne R., van den Burg J., Brakenhoff J., Sloof P., van Boom J.H., Tromp M.C. Major transcript of the frameshifted coxii gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819–826. doi: 10.1016/0092-8674(86)90063-2. PubMed DOI
Stuart K.D., Schnaufer A., Ernst N.L., Panigrahi A.K. Complex management: RNA editing in trypanosomes. Trends Biochem. Sci. 2005;30:97–105. doi: 10.1016/j.tibs.2004.12.006. PubMed DOI
Rebagliati M.R., Melton D.A. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell. 1987;48:599–605. doi: 10.1016/0092-8674(87)90238-8. PubMed DOI
Bass B.L., Weintraub H. A developmental regulated activity that unwinds RNA duplexes. Cell. 1987;48:607–613. doi: 10.1016/0092-8674(87)90239-X. PubMed DOI
Bass B.L., Weintraub H. An unwinding activity that covalently modifies its double-strand RNA substrate. Cell. 1988;55:1089–1098. doi: 10.1016/0092-8674(88)90253-X. PubMed DOI
Powell L.M., Wallis S.C., Pease R.J., Edwards Y.H., Knott T.J., Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-48 in intestine. Cell. 1987;50:831–840. doi: 10.1016/0092-8674(87)90510-1. PubMed DOI
Gerber A.P., Keller W. RNA editing by base deamination: More enzymes, more targets, new mysteries. Trends Biochem. Sci. 2001;26:376–384. doi: 10.1016/S0968-0004(01)01827-8. PubMed DOI
Hough R.F., Bass B.L. Purification of the Xenopus laevis dsRNA adenosine deaminase. J. Biol. Chem. 1994;269:9933–9939. PubMed
Kim U., Garner T.L., Sanford T., Speicher D., Murray J.M., Nishikura K. Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J. Biol. Chem. 1994;269:13480–13489. PubMed
O’Connell M.A., Keller W. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc. Natl. Acad. Sci. USA. 1994;91:10596–10600. doi: 10.1073/pnas.91.22.10596. PubMed DOI PMC
Maas S., Melcher T., Herb A., Seeburg P.H., Keller W., Krause S., Higuchi M., O’Connell M.A. Structural requirements for RNA editing in glutamate receptor pre-mRNA by recombinant double-stranded RNA adenosine deaminase. J. Biol. Chem. 1996;271:12221–12226. doi: 10.1074/jbc.271.21.12221. PubMed DOI
Melcher T., Maas S., Herb A., Sprengel R., Seeburg P.H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379:460–464. doi: 10.1038/379460a0. PubMed DOI
O’Connell M.A., Gerber A., Keller W. Purification of human double-stranded RNA-specific editase 1 (hred1) involved in editing of brain glutamate receptor b pre-mRNA. J. Biol. Chem. 1997;272:473–478. PubMed
Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P.H. Red2, a brain specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 1996;271:31795–31798. doi: 10.1074/jbc.271.50.31795. PubMed DOI
Schumacher J.M., Lee K., Edelhoff S., Braun R.E. Distribution of tenr, an RNA-binding protein, in a lattice-like network within the spermatid nucleus in the mouse. Biol. Reprod. 1995;52:1274–1283. doi: 10.1095/biolreprod52.6.1274. PubMed DOI
Weier H.U., George C.X., Greulich K.M., Samuel C.E. The interferon-inducible, double-stranded RNA-specific adenosine deaminase gene (dsrad) maps to human chromosome 1q21.1–21.2. Genomics. 1995;30:372–375. doi: 10.1006/geno.1995.0034. PubMed DOI
Wang Y., Zeng Y., Murray J.M., Nishikura K. Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: The enzyme for glutamate-activated ion channel RNA editing. J. Mol. Biol. 1995;254:184–195. doi: 10.1006/jmbi.1995.0610. PubMed DOI
Patterson J.B., Samuel C.E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: Evidence for two forms of the deaminase. Mol. Cell Biol. 1995;15:5376–5388. PubMed PMC
Liu Y., George C.X., Patterson J.B., Samuel C.E. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J. Biol. Chem. 1997;272:4419–4428. doi: 10.1074/jbc.272.7.4419. PubMed DOI
George C.X., Samuel C.E. Human RNA-specific adenosine deaminase adar1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl. Acad. Sci. USA. 1999;96:4621–4626. doi: 10.1073/pnas.96.8.4621. PubMed DOI PMC
Kawakubo K., Samuel C.E. Human RNA-specific adenosine deaminase (adar1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene. 2000;258:165–172. doi: 10.1016/S0378-1119(00)00368-1. PubMed DOI
George C.X., Wagner M.V., Samuel C.E. Expression of interferon-inducible RNA adenosine deaminase adar1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing. J. Biol. Chem. 2005;280:15020–15028. doi: 10.1074/jbc.M500476200. PubMed DOI
Schwartz T., Lowenhaupt K., Kim Y.G., Li L., Brown B.A., 2nd, Herbert A., Rich A. Proteolytic dissection of zab, the z-DNA-binding domain of human adar1. J. Biol. Chem. 1999;274:2899–2906. doi: 10.1074/jbc.274.5.2899. PubMed DOI
Wang A.J., Quigley G.J., Kolpak F.J., van der Marel G., van Boom J.H., Rich A. Left-handed double helical DNA: Variations in the backbone conformation. Science. 1981;211:171–176. doi: 10.1126/science.7444458. PubMed DOI
Herbert A., Alfken J., Kim Y.G., Mian I.S., Nishikura K., Rich A. A z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl. Acad. Sci. USA. 1997;94:8421–8426. doi: 10.1073/pnas.94.16.8421. PubMed DOI PMC
Athanasiadis A., Placido D., Maas S., Brown B.A., 2nd, Lowenhaupt K., Rich A. The crystal structure of the zbeta domain of the RNA-editing enzyme adar1 reveals distinct conserved surfaces among z-domains. J. Mol. Biol. 2005;351:496–507. doi: 10.1016/j.jmb.2005.06.028. PubMed DOI
Ng S.K., Weissbach R., Ronson G.E., Scadden A.D. Proteins that contain a functional z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res. 2013;41:9786–9799. doi: 10.1093/nar/gkt750. PubMed DOI PMC
Chen C.X., Cho D.S., Wang Q., Lai F., Carter K.C., Nishikura K. A third member of the RNA-specific adenosine deaminase gene family, adar3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6:755–767. doi: 10.1017/S1355838200000170. PubMed DOI PMC
Maas S., Gommans W.M. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res. 2009;37:5822–5829. doi: 10.1093/nar/gkp599. PubMed DOI PMC
St Johnston D., Brown N.H., Gall J.G., Jantsch M. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA. 1992;89:10979–10983. PubMed PMC
Bycroft M., Grunert S., Murzin A.G., Proctor M., St Johnston D. Nmr solution structure of a dsRNA binding domain from drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. Embo J. 1995;14:3563–3571. PubMed PMC
Kharrat A., Macias M.J., Gibson T.J., Nilges M., Pastore A. Structure of the dsRNA binding domain of E. Coli RNAse III. Embo J. 1995;14:3572–3584. PubMed PMC
Nanduri S., Carpick B.W., Yang Y., Williams B.R., Qin J. Structure of the double-stranded RNA-binding domain of the protein kinase pkr reveals the molecular basis of its dsRNA-mediated activation. Embo J. 1998;17:5458–5465. doi: 10.1093/emboj/17.18.5458. PubMed DOI PMC
Ryter J.M., Schultz S.C. Molecular basis of double-stranded RNA-protein interactions: Structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 1998;17:7505–7513. doi: 10.1093/emboj/17.24.7505. PubMed DOI PMC
Stefl R., Xu M., Skrisovska L., Emeson R.B., Allain F.H. Structure and specific RNA binding of adar2 double-stranded RNA binding motifs. Structure. 2006;14:345–355. doi: 10.1016/j.str.2005.11.013. PubMed DOI
Stefl R., Oberstrass F.C., Hood J.L., Jourdan M., Zimmermann M., Skrisovska L., Maris C., Peng L., Hofr C., Emeson R.B., et al. The solution structure of the adar2 dsrbm-RNA complex reveals a sequence-specific readout of the minor groove. Cell. 2010;143:225–237. doi: 10.1016/j.cell.2010.09.026. PubMed DOI PMC
Xu M., Wells K.S., Emeson R.B. Substrate-dependent contribution of double-stranded RNA-binding motifs to adar2 function. Mol. Biol. Cell. 2006;17:3211–3220. doi: 10.1091/mbc.E06-02-0162. PubMed DOI PMC
Liu Y., Lei M., Samuel C.E. Chimeric double-stranded RNA-specific adenosine deaminase adar1 proteins reveal functional selectivity of double-stranded RNA-binding domains from adar1 and protein kinase pkr. Proc. Natl. Acad. Sci. USA. 2000;97:12541–12546. doi: 10.1073/pnas.97.23.12541. PubMed DOI PMC
Lai F., Drakas R., Nishikura K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J. Biol. Chem. 1995;270:17098–17105. doi: 10.1074/jbc.270.29.17098. PubMed DOI
Macbeth M.R., Schubert H.L., Vandemark A.P., Lingam A.T., Hill C.P., Bass B.L. Inositol hexakisphosphate is bound in the adar2 core and required for RNA editing. Science. 2005;309:1534–1539. doi: 10.1126/science.1113150. PubMed DOI PMC
Betts L., Xiang S., Short S.A., Wolfenden R., Carter C.W., Jr. Cytidine deaminase. The 2.3 a crystal structure of an enzyme: Transition-state analog complex. J. Mol. Biol. 1994;235:635–656. doi: 10.1006/jmbi.1994.1018. PubMed DOI
Holden L.G., Prochnow C., Chang Y.P., Bransteitter R., Chelico L., Sen U., Stevens R.C., Goodman M.F., Chen X.S. Crystal structure of the anti-viral apobec3g catalytic domain and functional implications. Nature. 2008;456:121–124. doi: 10.1038/nature07357. PubMed DOI PMC
Kuratani M., Ishii R., Bessho Y., Fukunaga R., Sengoku T., Shirouzu M., Sekine S., Yokoyama S. Crystal structure of tRNA adenosine deaminase (TADA) from aquifex aeolicus. J. Biol. Chem. 2005;280:16002–16008. doi: 10.1074/jbc.M414541200. PubMed DOI
Prochnow C., Bransteitter R., Klein M.G., Goodman M.F., Chen X.S. The apobec-2 crystal structure and functional implications for the deaminase aid. Nature. 2007;445:447–451. doi: 10.1038/nature05492. PubMed DOI
Verbsky J.W., Chang S.C., Wilson M.P., Mochizuki Y., Majerus P.W. The pathway for the production of inositol hexakisphosphate in human cells. J. Biol. Chem. 2005;280:1911–1920. doi: 10.1074/jbc.M411528200. PubMed DOI
Schmauss C. Regulation of serotonin 2c receptor pre-mRNA editing by serotonin. Int. Rev. Neurobiol. 2005;63:83–100. PubMed
Polson A.G., Bass B.L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 1994;13:5701–5711. PubMed PMC
Mizrahi R.A., Phelps K.J., Ching A.Y., Beal P.A. Nucleoside analog studies indicate mechanistic differences between RNA-editing adenosine deaminases. Nucleic Acids Res. 2012;40:9825–9835. PubMed PMC
Stephens O.M., Yi-Brunozzi H.Y., Beal P.A. Analysis of the RNA-editing reaction of adar2 with structural and fluorescent analogues of the glur-b r/g editing site. Biochemistry. 2000;39:12243–12251. doi: 10.1021/bi0011577. PubMed DOI
Ward D.C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem. 1969;244:1228–1237. PubMed
Hart K., Nystrom B., Ohman M., Nilsson L. Molecular dynamics simulations and free energy calculations of base flipping in dsRNA. RNA. 2005;11:609–618. doi: 10.1261/rna.7147805. PubMed DOI PMC
Yi-Brunozzi H.Y., Stephens O.M., Beal P.A. Conformational changes that occur during an RNA editing adenosine deamination reaction. J. Biol. Chem. 2001;276:37827–37833. PubMed
Gallo A., Keegan L.P., Ring G.M., O’Connell M.A. An adar that edits transcripts encoding ion channel subunits functions as a dimer. Embo J. 2003;22:3421–3430. doi: 10.1093/emboj/cdg327. PubMed DOI PMC
Poulsen H., Jorgensen R., Heding A., Nielsen F.C., Bonven B., Egebjerg J. Dimerization of adar2 is mediated by the double-stranded RNA binding domain. RNA. 2006;12:1350–1360. doi: 10.1261/rna.2314406. PubMed DOI PMC
Chilibeck K.A., Wu T., Liang C., Schellenberg M.J., Gesner E.M., Lynch J.M., MacMillan A.M. Fret analysis of in vivo dimerization by RNA-editing enzymes. J. Biol. Chem. 2006;281:16530–16535. doi: 10.1074/jbc.M511831200. PubMed DOI
Macbeth M.R., Lingam A.T., Bass B.L. Evidence for auto-inhibition by the N terminus of hadar2 and activation by dsRNA binding. RNA. 2004;10:1563–1571. PubMed PMC
Valente L., Nishikura K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 2007;282:16054–16061. doi: 10.1074/jbc.M611392200. PubMed DOI PMC
Nishikura K., Yoo C., Kim U., Murray J.M., Estes P.A., Cash F.E., Liebhaber S.A. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 1991;10:3523–3532. PubMed PMC
Athanasiadis A., Rich A., Maas S. Widespread a-to-i RNA editing of alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2:e391. doi: 10.1371/journal.pbio.0020391. PubMed DOI PMC
Blow M., Futreal P.A., Wooster R., Stratton M.R. A survey of RNA editing in human brain. Genome Res. 2004;14:2379–2387. PubMed PMC
Levanon E.Y., Eisenberg E., Yelin R., Nemzer S., Hallegger M., Shemesh R., Fligelman Z.Y., Shoshan A., Pollock S.R., Sztybel D., et al. Systematic identification of abundant a-to-i editing sites in the human transcriptome. Nat. Biotechnol. 2004;22:1001–1005. doi: 10.1038/nbt996. PubMed DOI
Kim D.D., Kim T.T., Walsh T., Kobayashi Y., Matise T.C., Buyske S., Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004;14:1719–1725. doi: 10.1101/gr.2855504. PubMed DOI PMC
Peng Z., Cheng Y., Tan B.C., Kang L., Tian Z., Zhu Y., Zhang W., Liang Y., Hu X., Tan X., et al. Comprehensive analysis of RNA-seq data reveals extensive RNA editing in a human transcriptome. Nat. Biotechnol. 2012;30:253–260. doi: 10.1038/nbt.2122. PubMed DOI
Neeman Y., Levanon E.Y., Jantsch M.F., Eisenberg E. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA. 2006;12:1802–1809. doi: 10.1261/rna.165106. PubMed DOI PMC
Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellaker C., Vesely C., Ponting C.P., McLaughlin P.J., et al. The RNA-editing enzyme adar1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. PubMed DOI PMC
Vitali P., Scadden A.D. Double-stranded RNAs containing multiple iu pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 2010;17:1043–1050. PubMed PMC
Paro S., Li X., O’Connell M.A., Keegan L.P. Regulation and functions of adar in Drosophila. Curr. Top. Microbiol. Immunol. 2012;353:221–236. PubMed
Garrett S., Rosenthal J.J. RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science. 2012;335:848–851. doi: 10.1126/science.1212795. PubMed DOI PMC
Sommer B., Kohler M., Sprengel R., Seeburg P.H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67:11–19. PubMed
Higuchi M., Maas S., Single F.N., Hartner J., Rozov A., Burnashev N., Feldmeyer D., Sprengel R., Seeburg P.H. Point mutation in an ampa receptor gene rescues lethality in mice deficient in the RNA-editing enzyme adar2. Nature. 2000;406:78–81. PubMed
Hollmann M., Hartley M., Heinemann S. Ca2+ permeability of ka-ampa-gated glutamate receptor channels depends on subunit composition. Science. 1991;252:851–853. PubMed
Verdoorn T.A., Burnashev N., Monyer H., Seeburg P.H., Sakmann B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science. 1991;252:1715–1718. doi: 10.1126/science.1710829. PubMed DOI
Higuchi M., Single F.N., Kohler M., Sommer B., Sprengel R., Seeburg P.H. RNA editing of ampa receptor subunit glur-b: A base-paired intron-exon structure determines position and efficiency. Cell. 1993;75:1361–1370. PubMed
Greger I.H., Khatri L., Ziff E.B. RNA editing at arg607 controls ampa receptor exit from the endoplasmic reticulum. Neuron. 2002;34:759–772. PubMed
Greger I.H., Khatri L., Kong X., Ziff E.B. Ampa receptor tetramerization is mediated by q/r editing. Neuron. 2003;40:763–774. doi: 10.1016/S0896-6273(03)00668-8. PubMed DOI
Brusa R., Zimmermann F., Koh D.-S., Feldmeyer D., Gass P., Seeburg P.H., Sprengel R. Early-onset epilepsy and postnatal lethality associated with editing-deficient glur-b allele in mice. Science. 1995;270:1677–1680. doi: 10.1126/science.270.5242.1677. PubMed DOI
Feldmeyer D., Kask K., Brusa R., Kornau H.C., Kolhekar R., Rozov A., Burnashev N., Jensen V., Hvalby O., Sprengel R., et al. Neurological dysfunctions in mice expressing different levels of the q/r site-unedited ampar subunit glur-b. Nat. Neurosci. 1999;2:57–64. doi: 10.1038/16026. PubMed DOI
Lomeli H., Mosbacher J., Melcher T., Höger T., Geiger J.R., Kuner T., Monyer H., Higuchi M., Bach A., Seeburg P.H. Control of kinetic properties of ampa receptor channels by nuclear RNA editing. Science. 1994;266:1709–1713. doi: 10.1126/science.7992055. PubMed DOI
Köhler M., Burnashev N., Sakmann B., Seeburg P.H. Determinants of Ca2+ permeability in both tm1 and tm2 of high affinity kainate receptor channels: Diversity by RNA editing. Neuron. 1993;10:491–500. PubMed
Burns C.M., Chu H., Rueter S.M., Hutchinson L.K., Canton H., Sanders-Bush E., Emeson R.B. Regulation of serotonin-2c receptor g-protein coupling by RNA editing. Nature. 1997;387:303–308. PubMed
Bhalla T., Rosenthal J.J., Holmgren M., Reenan R. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat. Struct. Mol. Biol. 2004;11:950–956. doi: 10.1038/nsmb825. PubMed DOI
Ohlson J., Pedersen J.S., Haussler D., Ohman M. Editing modifies the gaba(a) receptor subunit alpha3. RNA. 2007;13:698–703. PubMed PMC
Daniel C., Wahlstedt H., Ohlson J., Bjork P., Ohman M. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type a (gaba(a)) receptor. J. Biol. Chem. 2011;286:2031–2040. PubMed PMC
Bazak L., Haviv A., Barak M., Jacob-Hirsch J., Deng P., Zhang R., Isaacs F.J., Rechavi G., Li J.B., Eisenberg E., et al. A-to-i RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2013 doi: 10.1101/gr.164749.113. PubMed DOI PMC
Levanon E.Y., Hallegger M., Kinar Y., Shemesh R., Djinovic-Carugo K., Rechavi G., Jantsch M.F., Eisenberg E. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res. 2005;33:1162–1168. PubMed PMC
Batzer M.A., Deininger P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 2002;3:370–379. doi: 10.1038/nrg798. PubMed DOI
Korenberg J.R., Rykowski M.C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988;53:391–400. PubMed
Deininger P.L., Batzer M.A. Alu repeats and human disease. Mol. Genet Metab. 1999;67:183–193. doi: 10.1006/mgme.1999.2864. PubMed DOI
Barak M., Levanon E.Y., Eisenberg E., Paz N., Rechavi G., Church G.M., Mehr R. Evidence for large diversity in the human transcriptome created by alu RNA editing. Nucleic Acids Res. 2009;37:6905–6915. doi: 10.1093/nar/gkp729. PubMed DOI PMC
Ohman M. A-to-i editing challenger or ally to the microRNA process. Biochimie. 2007;89:1171–1176. PubMed
Yang W., Chendrimada T.P., Wang Q., Higuchi M., Seeburg P.H., Shiekhattar R., Nishikura K. Modulation of microRNA processing and expression through RNA editing by adar deaminases. Nat. Struct. Mol. Biol. 2006;13:13–21. PubMed PMC
Kawahara Y., Zinshteyn B., Chendrimada T.P., Shiekhattar R., Nishikura K. RNA editing of the microRNA-151 precursor blocks cleavage by the dicer-trbp complex. EMBO Rep. 2007;8:763–769. doi: 10.1038/sj.embor.7401011. PubMed DOI PMC
Iizasa H., Wulff B.E., Alla N.R., Maragkakis M., Megraw M., Hatzigeorgiou A., Iwakiri D., Takada K., Wiedmer A., Showe L., et al. Editing of epstein-barr virus-encoded bart6 microRNAs controls their dicer targeting and consequently affects viral latency. J. Biol. Chem. 2010;285:33358–33370. doi: 10.1074/jbc.M110.138362. PubMed DOI PMC
Kawahara Y., Zinshteyn B., Sethupathy P., Iizasa H., Hatzigeorgiou A.G., Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315:1137–1140. PubMed PMC
Heale B.S., Keegan L.P., McGurk L., Michlewski G., Brindle J., Stanton C.M., Caceres J.F., O’Connell M.A. Editing independent effects of adars on the miRNA/siRNA pathways. Embo J. 2009;28:3145–3156. doi: 10.1038/emboj.2009.244. PubMed DOI PMC
Ota H., Sakurai M., Gupta R., Valente L., Wulff B.E., Ariyoshi K., Iizasa H., Davuluri R.V., Nishikura K. Adar1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell. 2013;153:575–589. doi: 10.1016/j.cell.2013.03.024. PubMed DOI PMC
Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015;33:257–290. PubMed PMC
Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA helicase rig-i has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004;5:730–737. doi: 10.1038/ni1087. PubMed DOI
Kang D.C., Gopalkrishnan R.V., Wu Q., Jankowsky E., Pyle A.M., Fisher P.B. Mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent atpase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. USA. 2002;99:637–642. doi: 10.1073/pnas.022637199. PubMed DOI PMC
Sato M., Suemori H., Hata N., Asagiri M., Ogasawara K., Nakao K., Nakaya T., Katsuki M., Noguchi S., Tanaka N., et al. Distinct and essential roles of transcription factors irf-3 and irf-7 in response to viruses for ifn-alpha/beta gene induction. Immunity. 2000;13:539–548. doi: 10.1016/S1074-7613(00)00053-4. PubMed DOI
Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M.A. Biased hypermuation and other genetic changes in defective measles viruses in human brain infections. Cell. 1988;55:255–265. doi: 10.1016/0092-8674(88)90048-7. PubMed DOI PMC
Bass B.L., Weintraub H., Cattaneo R., Billeter M.A. Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell. 1989;56 doi: 10.1016/0092-8674(89)90234-1. PubMed DOI
Taylor D.R., Puig M., Darnell M.E., Mihalik K., Feinstone S.M. New antiviral pathway that mediates hepatitis c virus replicon interferon sensitivity through adar1. J. Virol. 2005;79:6291–6298. doi: 10.1128/JVI.79.10.6291-6298.2005. PubMed DOI PMC
Ward S.V., George C.X., Welch M.J., Liou L.Y., Hahm B., Lewicki H., de la Torre J.C., Samuel C.E., Oldstone M.B. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc. Natl. Acad. Sci. USA. 2011;108:331–336. doi: 10.1073/pnas.1017241108. PubMed DOI PMC
Samuel C.E. Adenosine deaminases acting on RNA (adars) are both antiviral and proviral. Virology. 2011;411:180–193. doi: 10.1016/j.virol.2010.12.004. PubMed DOI PMC
Hartner J.C., Schmittwolf C., Kispert A., Muller A.M., Higuchi M., Seeburg P.H. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme adar1. J. Biol. Chem. 2004;279:4894–4902. doi: 10.1074/jbc.M311347200. PubMed DOI
Hartner J.C., Walkley C.R., Lu J., Orkin S.H. Adar1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009;10:109–115. doi: 10.1038/ni.1680. PubMed DOI PMC
Wang Q., Miyakoda M., Yang W., Khillan J., Stachura D.L., Weiss M.J., Nishikura K. Stress-induced apoptosis associated with null mutation of adar1 RNA editing deaminase gene. J. Biol. Chem. 2004;279:4952–4961. doi: 10.1074/jbc.M310162200. PubMed DOI
Aicardi J., Goutieres F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 1984;15:49–54. doi: 10.1002/ana.410150109. PubMed DOI
Rice G., Patrick T., Parmar R., Taylor C.F., Aeby A., Aicardi J., Artuch R., Montalto S.A., Bacino C.A., Barroso B., et al. Clinical and molecular phenotype of aicardi-goutieres syndrome. Am. J. Hum. Genet. 2007;81:713–725. doi: 10.1086/521373. PubMed DOI PMC
Crow Y.J., Rehwinkel J. Aicardi-goutieres syndrome and related phenotypes: Linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 2009;18:R130–R136. doi: 10.1093/hmg/ddp293. PubMed DOI PMC
Rice G.I., Kasher P.R., Forte G.M., Mannion N.M., Greenwood S.M., Szynkiewicz M., Dickerson J.E., Bhaskar S.S., Zampini M., Briggs T.A., et al. Mutations in adar1 cause aicardi-goutieres syndrome associated with a type I interferon signature. Nat. Genet. 2012;44:1243–1248. doi: 10.1038/ng.2414. PubMed DOI PMC
Livingston J.H., Lin J.P., Dale R.C., Gill D., Brogan P., Munnich A., Kurian M.A., Gonzalez-Martinez V., de Goede C.G., Falconer A., et al. A type i interferon signature identifies bilateral striatal necrosis due to mutations in adar1. J. Med. Genet. 2014;51:76–82. doi: 10.1136/jmedgenet-2013-102038. PubMed DOI
Crow Y.J. Aicardi-goutieres syndrome. Handb. Clin. Neurol. 2013;113:1629–1635. PubMed
Suzuki N., Suzuki T., Inagaki K., Ito S., Kono M., Fukai K., Takama H., Sato K., Ishikawa O., Abe M., et al. Mutation analysis of the adar1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J. Investig. Dermatol. 2005;124:1186–1192. doi: 10.1111/j.0022-202X.2005.23732.x. PubMed DOI
Hou Y., Chen J., Gao M., Zhou F., Du W., Shen Y., Yang S., Zhang X.J. Five novel mutations of RNA-specific adenosine deaminase gene with dyschromatosis symmetrica hereditaria. Acta Derm.-Venereol. 2007;87:18–21. doi: 10.2340/00015555-0168. PubMed DOI
Oyama M., Shimizu H., Ohata Y., Tajima S., Nishikawa T. Dyschromatosis symmetrica hereditaria (reticulate acropigmentation of dohi): Report of a japanese family with the condition and a literature review of 185 cases. Br. J. Dermatol. 1999;140:491–496. doi: 10.1046/j.1365-2133.1999.02716.x. PubMed DOI
Miyamura Y., Suzuki T., Kono M., Inagaki K., Ito S., Suzuki N., Tomita Y. Mutations of the RNA-specific adenosine deaminase gene (dsrad) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 2003;73:693–699. doi: 10.1086/378209. PubMed DOI PMC
Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., Donaldson D., Goto J., O’Regan J.P., Deng H.X., et al. Mutations in cu/zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62. doi: 10.1038/362059a0. PubMed DOI
Arai T., Hasegawa M., Akiyama H., Ikeda K., Nonaka T., Mori H., Mann D., Tsuchiya K., Yoshida M., Hashizume Y., et al. Tdp-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 2006;351:602–611. PubMed
Kawahara Y., Ito K., Sun H., Aizawa H., Kanazawa I., Kwak S. Glutamate receptors: RNA editing and death of motor neurons. Nature. 2004;427:801. doi: 10.1038/427801a. PubMed DOI
Hideyama T., Yamashita T., Suzuki T., Tsuji S., Higuchi M., Seeburg P.H., Takahashi R., Misawa H., Kwak S. Induced loss of adar2 engenders slow death of motor neurons from q/r site-unedited glur2. J. Neurosci. 2010;30:11917–11925. doi: 10.1523/JNEUROSCI.2021-10.2010. PubMed DOI PMC
Yamashita T., Chai H.L., Teramoto S., Tsuji S., Shimazaki K., Muramatsu S., Kwak S. Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous aav9-adar2 delivery to motor neurons. EMBO Mol. Med. 2013;5:1710–1719. doi: 10.1002/emmm.201302935. PubMed DOI PMC
Paz N., Levanon E.Y., Amariglio N., Heimberger A.B., Ram Z., Constantini S., Barbash Z.S., Adamsky K., Safran M., Hirschberg A., et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17:1586–1595. doi: 10.1101/gr.6493107. PubMed DOI PMC
Gallo A., Locatelli F. Adars: Allies or enemies? The importance of a-to-i RNA editing in human disease: From cancer to hiv-1. Biol. Rev. 2012;87:95–110. doi: 10.1111/j.1469-185X.2011.00186.x. PubMed DOI
Salameh A., Lee A.K., Cardo-Vila M., Nunes D.N., Efstathiou E., Staquicini F.I., Dobroff A.S., Marchio S., Navone N.M., Hosoya H., et al. Prune2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA pca3. Proc. Natl. Acad. Sci. USA. 2015;112:8403–8408. doi: 10.1073/pnas.1507882112. PubMed DOI PMC
Chen L., Li Y., Lin C.H., Chan T.H., Chow R.K., Song Y., Liu M., Yuan Y.F., Fu L., Kong K.L., et al. Recoding RNA editing of azin1 predisposes to hepatocellular carcinoma. Nat. Med. 2013;19:209–216. doi: 10.1038/nm.3043. PubMed DOI PMC
Gallo A. RNA editing enters the limelight in cancer. Nat. Med. 2013;19:130–131. doi: 10.1038/nm.3072. PubMed DOI
Chan T.H., Lin C.H., Qi L., Fei J., Li Y., Yong K.J., Liu M., Song Y., Chow R.K., Ng V.H., et al. A disrupted RNA editing balance mediated by adars (adenosine deaminases that act on RNA) in human hepatocellular carcinoma. Gut. 2014;63:832–843. doi: 10.1136/gutjnl-2012-304037. PubMed DOI PMC
Liu W.H., Chen C.H., Yeh K.H., Li C.L., Wu Y.J., Chen D.S., Chen P.J., Yeh S.H. Adar2-mediated editing of mir-214 and mir-122 precursor and antisense RNA transcripts in liver cancers. PLoS ONE. 2013;8:e81922. doi: 10.1371/journal.pone.0081922. PubMed DOI PMC
Jiang Q., Crews L.A., Barrett C.L., Chun H.J., Court A.C., Isquith J.M., Zipeto M.A., Goff D.J., Minden M., Sadarangani A., et al. Adar1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA. 2013;110:1041–1046. doi: 10.1073/pnas.1213021110. PubMed DOI PMC
Steinman R.A., Yang Q., Gasparetto M., Robinson L.J., Liu X., Lenzner D.E., Hou J., Smith C., Wang Q. Deletion of the RNA-editing enzyme adar1 causes regression of established chronic myelogenous leukemia in mice. Int. J. Cancer. 2013;132:1741–1750. doi: 10.1002/ijc.27851. PubMed DOI PMC
Cenci C., Barzotti R., Galeano F., Corbelli S., Rota R., Massimi L., di Rocco C., O’Connell M.A., Gallo A. Down-regulation of RNA editing in pediatric astrocytomas: Adar2 editing activity inhibits cell migration and proliferation. J. Biol. Chem. 2008;283:7251–7260. doi: 10.1074/jbc.M708316200. PubMed DOI
Galeano F., Rossetti C., Tomaselli S., Cifaldi L., Lezzerini M., Pezzullo M., Boldrini R., Massimi L., di Rocco C.M., Locatelli F., et al. Adar2-editing activity inhibits glioblastoma growth through the modulation of the cdc14b/skp2/p21/p27 axis. Oncogene. 2013;32:998–1009. doi: 10.1038/onc.2012.125. PubMed DOI PMC
Ishiuchi S., Tsuzuki K., Yoshida Y., Yamada N., Hagimura N., Okado H., Miwa A., Kurihara H., Nakazato Y., Tamura M., et al. Blockage of Ca(2+)-permeable ampa receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 2002;8:971–978. PubMed
Maas S., Patt S., Schrey M., Rich A. Underediting of glutamate receptor glur-b mRNA in malignant gliomas. Proc. Natl. Acad. Sci. USA. 2001;98:14687–14692. doi: 10.1073/pnas.251531398. PubMed DOI PMC
Alon S., Mor E., Vigneault F., Church G.M., Locatelli F., Galeano F., Gallo A., Shomron N., Eisenberg E. Systematic identification of edited microRNAs in the human brain. Genome Res. 2012;22:1533–1540. doi: 10.1101/gr.131573.111. PubMed DOI PMC
Tomaselli S., Galeano F., Alon S., Raho S., Galardi S., Polito V.A., Presutti C., Vincenti S., Eisenberg E., Locatelli F., et al. Modulation of microRNA editing, expression and processing by adar2 deaminase in glioblastoma. Genome Biol. 2015;16 doi: 10.1186/s13059-014-0575-z. PubMed DOI PMC
Choudhury Y., Tay F.C., Lam D.H., Sandanaraj E., Tang C., Ang B.T., Wang S. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J. Clin. Investig. 2012;122:4059–4076. doi: 10.1172/JCI62925. PubMed DOI PMC
Ishiuchi S., Yoshida Y., Sugawara K., Aihara M., Ohtani T., Watanabe T., Saito N., Tsuzuki K., Okado H., Miwa A., et al. Ca2+-permeable ampa receptors regulate growth of human glioblastoma via akt activation. J. Neurosci. 2007;27:7987–8001. doi: 10.1523/JNEUROSCI.2180-07.2007. PubMed DOI PMC
A to I editing in disease is not fake news
The Epitranscriptome and Innate Immunity