New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

. 2015 Sep 30 ; 5 (4) : 2338-62. [epub] 20150930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26437436

The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.

Zobrazit více v PubMed

Machnicka M.A., Milanowska K., Osman Oglou O., Purta E., Kurkowska M., Olchowik A., Januszewski W., Kalinowski S., Dunin-Horkawicz S., Rother K.M., et al. Modomics: A database of RNA modification pathways—2013 update. Nucleic Acids Res. 2013;41:D262–D267. doi: 10.1093/nar/gks1007. PubMed DOI PMC

Benne R., van den Burg J., Brakenhoff J., Sloof P., van Boom J.H., Tromp M.C. Major transcript of the frameshifted coxii gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell. 1986;46:819–826. doi: 10.1016/0092-8674(86)90063-2. PubMed DOI

Stuart K.D., Schnaufer A., Ernst N.L., Panigrahi A.K. Complex management: RNA editing in trypanosomes. Trends Biochem. Sci. 2005;30:97–105. doi: 10.1016/j.tibs.2004.12.006. PubMed DOI

Rebagliati M.R., Melton D.A. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell. 1987;48:599–605. doi: 10.1016/0092-8674(87)90238-8. PubMed DOI

Bass B.L., Weintraub H. A developmental regulated activity that unwinds RNA duplexes. Cell. 1987;48:607–613. doi: 10.1016/0092-8674(87)90239-X. PubMed DOI

Bass B.L., Weintraub H. An unwinding activity that covalently modifies its double-strand RNA substrate. Cell. 1988;55:1089–1098. doi: 10.1016/0092-8674(88)90253-X. PubMed DOI

Powell L.M., Wallis S.C., Pease R.J., Edwards Y.H., Knott T.J., Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-48 in intestine. Cell. 1987;50:831–840. doi: 10.1016/0092-8674(87)90510-1. PubMed DOI

Gerber A.P., Keller W. RNA editing by base deamination: More enzymes, more targets, new mysteries. Trends Biochem. Sci. 2001;26:376–384. doi: 10.1016/S0968-0004(01)01827-8. PubMed DOI

Hough R.F., Bass B.L. Purification of the Xenopus laevis dsRNA adenosine deaminase. J. Biol. Chem. 1994;269:9933–9939. PubMed

Kim U., Garner T.L., Sanford T., Speicher D., Murray J.M., Nishikura K. Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J. Biol. Chem. 1994;269:13480–13489. PubMed

O’Connell M.A., Keller W. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc. Natl. Acad. Sci. USA. 1994;91:10596–10600. doi: 10.1073/pnas.91.22.10596. PubMed DOI PMC

Maas S., Melcher T., Herb A., Seeburg P.H., Keller W., Krause S., Higuchi M., O’Connell M.A. Structural requirements for RNA editing in glutamate receptor pre-mRNA by recombinant double-stranded RNA adenosine deaminase. J. Biol. Chem. 1996;271:12221–12226. doi: 10.1074/jbc.271.21.12221. PubMed DOI

Melcher T., Maas S., Herb A., Sprengel R., Seeburg P.H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379:460–464. doi: 10.1038/379460a0. PubMed DOI

O’Connell M.A., Gerber A., Keller W. Purification of human double-stranded RNA-specific editase 1 (hred1) involved in editing of brain glutamate receptor b pre-mRNA. J. Biol. Chem. 1997;272:473–478. PubMed

Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P.H. Red2, a brain specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 1996;271:31795–31798. doi: 10.1074/jbc.271.50.31795. PubMed DOI

Schumacher J.M., Lee K., Edelhoff S., Braun R.E. Distribution of tenr, an RNA-binding protein, in a lattice-like network within the spermatid nucleus in the mouse. Biol. Reprod. 1995;52:1274–1283. doi: 10.1095/biolreprod52.6.1274. PubMed DOI

Weier H.U., George C.X., Greulich K.M., Samuel C.E. The interferon-inducible, double-stranded RNA-specific adenosine deaminase gene (dsrad) maps to human chromosome 1q21.1–21.2. Genomics. 1995;30:372–375. doi: 10.1006/geno.1995.0034. PubMed DOI

Wang Y., Zeng Y., Murray J.M., Nishikura K. Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: The enzyme for glutamate-activated ion channel RNA editing. J. Mol. Biol. 1995;254:184–195. doi: 10.1006/jmbi.1995.0610. PubMed DOI

Patterson J.B., Samuel C.E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: Evidence for two forms of the deaminase. Mol. Cell Biol. 1995;15:5376–5388. PubMed PMC

Liu Y., George C.X., Patterson J.B., Samuel C.E. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J. Biol. Chem. 1997;272:4419–4428. doi: 10.1074/jbc.272.7.4419. PubMed DOI

George C.X., Samuel C.E. Human RNA-specific adenosine deaminase adar1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl. Acad. Sci. USA. 1999;96:4621–4626. doi: 10.1073/pnas.96.8.4621. PubMed DOI PMC

Kawakubo K., Samuel C.E. Human RNA-specific adenosine deaminase (adar1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene. 2000;258:165–172. doi: 10.1016/S0378-1119(00)00368-1. PubMed DOI

George C.X., Wagner M.V., Samuel C.E. Expression of interferon-inducible RNA adenosine deaminase adar1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing. J. Biol. Chem. 2005;280:15020–15028. doi: 10.1074/jbc.M500476200. PubMed DOI

Schwartz T., Lowenhaupt K., Kim Y.G., Li L., Brown B.A., 2nd, Herbert A., Rich A. Proteolytic dissection of zab, the z-DNA-binding domain of human adar1. J. Biol. Chem. 1999;274:2899–2906. doi: 10.1074/jbc.274.5.2899. PubMed DOI

Wang A.J., Quigley G.J., Kolpak F.J., van der Marel G., van Boom J.H., Rich A. Left-handed double helical DNA: Variations in the backbone conformation. Science. 1981;211:171–176. doi: 10.1126/science.7444458. PubMed DOI

Herbert A., Alfken J., Kim Y.G., Mian I.S., Nishikura K., Rich A. A z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl. Acad. Sci. USA. 1997;94:8421–8426. doi: 10.1073/pnas.94.16.8421. PubMed DOI PMC

Athanasiadis A., Placido D., Maas S., Brown B.A., 2nd, Lowenhaupt K., Rich A. The crystal structure of the zbeta domain of the RNA-editing enzyme adar1 reveals distinct conserved surfaces among z-domains. J. Mol. Biol. 2005;351:496–507. doi: 10.1016/j.jmb.2005.06.028. PubMed DOI

Ng S.K., Weissbach R., Ronson G.E., Scadden A.D. Proteins that contain a functional z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res. 2013;41:9786–9799. doi: 10.1093/nar/gkt750. PubMed DOI PMC

Chen C.X., Cho D.S., Wang Q., Lai F., Carter K.C., Nishikura K. A third member of the RNA-specific adenosine deaminase gene family, adar3, contains both single- and double-stranded RNA binding domains. RNA. 2000;6:755–767. doi: 10.1017/S1355838200000170. PubMed DOI PMC

Maas S., Gommans W.M. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res. 2009;37:5822–5829. doi: 10.1093/nar/gkp599. PubMed DOI PMC

St Johnston D., Brown N.H., Gall J.G., Jantsch M. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA. 1992;89:10979–10983. PubMed PMC

Bycroft M., Grunert S., Murzin A.G., Proctor M., St Johnston D. Nmr solution structure of a dsRNA binding domain from drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. Embo J. 1995;14:3563–3571. PubMed PMC

Kharrat A., Macias M.J., Gibson T.J., Nilges M., Pastore A. Structure of the dsRNA binding domain of E. Coli RNAse III. Embo J. 1995;14:3572–3584. PubMed PMC

Nanduri S., Carpick B.W., Yang Y., Williams B.R., Qin J. Structure of the double-stranded RNA-binding domain of the protein kinase pkr reveals the molecular basis of its dsRNA-mediated activation. Embo J. 1998;17:5458–5465. doi: 10.1093/emboj/17.18.5458. PubMed DOI PMC

Ryter J.M., Schultz S.C. Molecular basis of double-stranded RNA-protein interactions: Structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 1998;17:7505–7513. doi: 10.1093/emboj/17.24.7505. PubMed DOI PMC

Stefl R., Xu M., Skrisovska L., Emeson R.B., Allain F.H. Structure and specific RNA binding of adar2 double-stranded RNA binding motifs. Structure. 2006;14:345–355. doi: 10.1016/j.str.2005.11.013. PubMed DOI

Stefl R., Oberstrass F.C., Hood J.L., Jourdan M., Zimmermann M., Skrisovska L., Maris C., Peng L., Hofr C., Emeson R.B., et al. The solution structure of the adar2 dsrbm-RNA complex reveals a sequence-specific readout of the minor groove. Cell. 2010;143:225–237. doi: 10.1016/j.cell.2010.09.026. PubMed DOI PMC

Xu M., Wells K.S., Emeson R.B. Substrate-dependent contribution of double-stranded RNA-binding motifs to adar2 function. Mol. Biol. Cell. 2006;17:3211–3220. doi: 10.1091/mbc.E06-02-0162. PubMed DOI PMC

Liu Y., Lei M., Samuel C.E. Chimeric double-stranded RNA-specific adenosine deaminase adar1 proteins reveal functional selectivity of double-stranded RNA-binding domains from adar1 and protein kinase pkr. Proc. Natl. Acad. Sci. USA. 2000;97:12541–12546. doi: 10.1073/pnas.97.23.12541. PubMed DOI PMC

Lai F., Drakas R., Nishikura K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J. Biol. Chem. 1995;270:17098–17105. doi: 10.1074/jbc.270.29.17098. PubMed DOI

Macbeth M.R., Schubert H.L., Vandemark A.P., Lingam A.T., Hill C.P., Bass B.L. Inositol hexakisphosphate is bound in the adar2 core and required for RNA editing. Science. 2005;309:1534–1539. doi: 10.1126/science.1113150. PubMed DOI PMC

Betts L., Xiang S., Short S.A., Wolfenden R., Carter C.W., Jr. Cytidine deaminase. The 2.3 a crystal structure of an enzyme: Transition-state analog complex. J. Mol. Biol. 1994;235:635–656. doi: 10.1006/jmbi.1994.1018. PubMed DOI

Holden L.G., Prochnow C., Chang Y.P., Bransteitter R., Chelico L., Sen U., Stevens R.C., Goodman M.F., Chen X.S. Crystal structure of the anti-viral apobec3g catalytic domain and functional implications. Nature. 2008;456:121–124. doi: 10.1038/nature07357. PubMed DOI PMC

Kuratani M., Ishii R., Bessho Y., Fukunaga R., Sengoku T., Shirouzu M., Sekine S., Yokoyama S. Crystal structure of tRNA adenosine deaminase (TADA) from aquifex aeolicus. J. Biol. Chem. 2005;280:16002–16008. doi: 10.1074/jbc.M414541200. PubMed DOI

Prochnow C., Bransteitter R., Klein M.G., Goodman M.F., Chen X.S. The apobec-2 crystal structure and functional implications for the deaminase aid. Nature. 2007;445:447–451. doi: 10.1038/nature05492. PubMed DOI

Verbsky J.W., Chang S.C., Wilson M.P., Mochizuki Y., Majerus P.W. The pathway for the production of inositol hexakisphosphate in human cells. J. Biol. Chem. 2005;280:1911–1920. doi: 10.1074/jbc.M411528200. PubMed DOI

Schmauss C. Regulation of serotonin 2c receptor pre-mRNA editing by serotonin. Int. Rev. Neurobiol. 2005;63:83–100. PubMed

Polson A.G., Bass B.L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 1994;13:5701–5711. PubMed PMC

Mizrahi R.A., Phelps K.J., Ching A.Y., Beal P.A. Nucleoside analog studies indicate mechanistic differences between RNA-editing adenosine deaminases. Nucleic Acids Res. 2012;40:9825–9835. PubMed PMC

Stephens O.M., Yi-Brunozzi H.Y., Beal P.A. Analysis of the RNA-editing reaction of adar2 with structural and fluorescent analogues of the glur-b r/g editing site. Biochemistry. 2000;39:12243–12251. doi: 10.1021/bi0011577. PubMed DOI

Ward D.C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J. Biol. Chem. 1969;244:1228–1237. PubMed

Hart K., Nystrom B., Ohman M., Nilsson L. Molecular dynamics simulations and free energy calculations of base flipping in dsRNA. RNA. 2005;11:609–618. doi: 10.1261/rna.7147805. PubMed DOI PMC

Yi-Brunozzi H.Y., Stephens O.M., Beal P.A. Conformational changes that occur during an RNA editing adenosine deamination reaction. J. Biol. Chem. 2001;276:37827–37833. PubMed

Gallo A., Keegan L.P., Ring G.M., O’Connell M.A. An adar that edits transcripts encoding ion channel subunits functions as a dimer. Embo J. 2003;22:3421–3430. doi: 10.1093/emboj/cdg327. PubMed DOI PMC

Poulsen H., Jorgensen R., Heding A., Nielsen F.C., Bonven B., Egebjerg J. Dimerization of adar2 is mediated by the double-stranded RNA binding domain. RNA. 2006;12:1350–1360. doi: 10.1261/rna.2314406. PubMed DOI PMC

Chilibeck K.A., Wu T., Liang C., Schellenberg M.J., Gesner E.M., Lynch J.M., MacMillan A.M. Fret analysis of in vivo dimerization by RNA-editing enzymes. J. Biol. Chem. 2006;281:16530–16535. doi: 10.1074/jbc.M511831200. PubMed DOI

Macbeth M.R., Lingam A.T., Bass B.L. Evidence for auto-inhibition by the N terminus of hadar2 and activation by dsRNA binding. RNA. 2004;10:1563–1571. PubMed PMC

Valente L., Nishikura K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 2007;282:16054–16061. doi: 10.1074/jbc.M611392200. PubMed DOI PMC

Nishikura K., Yoo C., Kim U., Murray J.M., Estes P.A., Cash F.E., Liebhaber S.A. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 1991;10:3523–3532. PubMed PMC

Athanasiadis A., Rich A., Maas S. Widespread a-to-i RNA editing of alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2:e391. doi: 10.1371/journal.pbio.0020391. PubMed DOI PMC

Blow M., Futreal P.A., Wooster R., Stratton M.R. A survey of RNA editing in human brain. Genome Res. 2004;14:2379–2387. PubMed PMC

Levanon E.Y., Eisenberg E., Yelin R., Nemzer S., Hallegger M., Shemesh R., Fligelman Z.Y., Shoshan A., Pollock S.R., Sztybel D., et al. Systematic identification of abundant a-to-i editing sites in the human transcriptome. Nat. Biotechnol. 2004;22:1001–1005. doi: 10.1038/nbt996. PubMed DOI

Kim D.D., Kim T.T., Walsh T., Kobayashi Y., Matise T.C., Buyske S., Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004;14:1719–1725. doi: 10.1101/gr.2855504. PubMed DOI PMC

Peng Z., Cheng Y., Tan B.C., Kang L., Tian Z., Zhu Y., Zhang W., Liang Y., Hu X., Tan X., et al. Comprehensive analysis of RNA-seq data reveals extensive RNA editing in a human transcriptome. Nat. Biotechnol. 2012;30:253–260. doi: 10.1038/nbt.2122. PubMed DOI

Neeman Y., Levanon E.Y., Jantsch M.F., Eisenberg E. RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA. 2006;12:1802–1809. doi: 10.1261/rna.165106. PubMed DOI PMC

Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellaker C., Vesely C., Ponting C.P., McLaughlin P.J., et al. The RNA-editing enzyme adar1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. PubMed DOI PMC

Vitali P., Scadden A.D. Double-stranded RNAs containing multiple iu pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 2010;17:1043–1050. PubMed PMC

Paro S., Li X., O’Connell M.A., Keegan L.P. Regulation and functions of adar in Drosophila. Curr. Top. Microbiol. Immunol. 2012;353:221–236. PubMed

Garrett S., Rosenthal J.J. RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science. 2012;335:848–851. doi: 10.1126/science.1212795. PubMed DOI PMC

Sommer B., Kohler M., Sprengel R., Seeburg P.H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67:11–19. PubMed

Higuchi M., Maas S., Single F.N., Hartner J., Rozov A., Burnashev N., Feldmeyer D., Sprengel R., Seeburg P.H. Point mutation in an ampa receptor gene rescues lethality in mice deficient in the RNA-editing enzyme adar2. Nature. 2000;406:78–81. PubMed

Hollmann M., Hartley M., Heinemann S. Ca2+ permeability of ka-ampa-gated glutamate receptor channels depends on subunit composition. Science. 1991;252:851–853. PubMed

Verdoorn T.A., Burnashev N., Monyer H., Seeburg P.H., Sakmann B. Structural determinants of ion flow through recombinant glutamate receptor channels. Science. 1991;252:1715–1718. doi: 10.1126/science.1710829. PubMed DOI

Higuchi M., Single F.N., Kohler M., Sommer B., Sprengel R., Seeburg P.H. RNA editing of ampa receptor subunit glur-b: A base-paired intron-exon structure determines position and efficiency. Cell. 1993;75:1361–1370. PubMed

Greger I.H., Khatri L., Ziff E.B. RNA editing at arg607 controls ampa receptor exit from the endoplasmic reticulum. Neuron. 2002;34:759–772. PubMed

Greger I.H., Khatri L., Kong X., Ziff E.B. Ampa receptor tetramerization is mediated by q/r editing. Neuron. 2003;40:763–774. doi: 10.1016/S0896-6273(03)00668-8. PubMed DOI

Brusa R., Zimmermann F., Koh D.-S., Feldmeyer D., Gass P., Seeburg P.H., Sprengel R. Early-onset epilepsy and postnatal lethality associated with editing-deficient glur-b allele in mice. Science. 1995;270:1677–1680. doi: 10.1126/science.270.5242.1677. PubMed DOI

Feldmeyer D., Kask K., Brusa R., Kornau H.C., Kolhekar R., Rozov A., Burnashev N., Jensen V., Hvalby O., Sprengel R., et al. Neurological dysfunctions in mice expressing different levels of the q/r site-unedited ampar subunit glur-b. Nat. Neurosci. 1999;2:57–64. doi: 10.1038/16026. PubMed DOI

Lomeli H., Mosbacher J., Melcher T., Höger T., Geiger J.R., Kuner T., Monyer H., Higuchi M., Bach A., Seeburg P.H. Control of kinetic properties of ampa receptor channels by nuclear RNA editing. Science. 1994;266:1709–1713. doi: 10.1126/science.7992055. PubMed DOI

Köhler M., Burnashev N., Sakmann B., Seeburg P.H. Determinants of Ca2+ permeability in both tm1 and tm2 of high affinity kainate receptor channels: Diversity by RNA editing. Neuron. 1993;10:491–500. PubMed

Burns C.M., Chu H., Rueter S.M., Hutchinson L.K., Canton H., Sanders-Bush E., Emeson R.B. Regulation of serotonin-2c receptor g-protein coupling by RNA editing. Nature. 1997;387:303–308. PubMed

Bhalla T., Rosenthal J.J., Holmgren M., Reenan R. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat. Struct. Mol. Biol. 2004;11:950–956. doi: 10.1038/nsmb825. PubMed DOI

Ohlson J., Pedersen J.S., Haussler D., Ohman M. Editing modifies the gaba(a) receptor subunit alpha3. RNA. 2007;13:698–703. PubMed PMC

Daniel C., Wahlstedt H., Ohlson J., Bjork P., Ohman M. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type a (gaba(a)) receptor. J. Biol. Chem. 2011;286:2031–2040. PubMed PMC

Bazak L., Haviv A., Barak M., Jacob-Hirsch J., Deng P., Zhang R., Isaacs F.J., Rechavi G., Li J.B., Eisenberg E., et al. A-to-i RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2013 doi: 10.1101/gr.164749.113. PubMed DOI PMC

Levanon E.Y., Hallegger M., Kinar Y., Shemesh R., Djinovic-Carugo K., Rechavi G., Jantsch M.F., Eisenberg E. Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res. 2005;33:1162–1168. PubMed PMC

Batzer M.A., Deininger P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 2002;3:370–379. doi: 10.1038/nrg798. PubMed DOI

Korenberg J.R., Rykowski M.C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988;53:391–400. PubMed

Deininger P.L., Batzer M.A. Alu repeats and human disease. Mol. Genet Metab. 1999;67:183–193. doi: 10.1006/mgme.1999.2864. PubMed DOI

Barak M., Levanon E.Y., Eisenberg E., Paz N., Rechavi G., Church G.M., Mehr R. Evidence for large diversity in the human transcriptome created by alu RNA editing. Nucleic Acids Res. 2009;37:6905–6915. doi: 10.1093/nar/gkp729. PubMed DOI PMC

Ohman M. A-to-i editing challenger or ally to the microRNA process. Biochimie. 2007;89:1171–1176. PubMed

Yang W., Chendrimada T.P., Wang Q., Higuchi M., Seeburg P.H., Shiekhattar R., Nishikura K. Modulation of microRNA processing and expression through RNA editing by adar deaminases. Nat. Struct. Mol. Biol. 2006;13:13–21. PubMed PMC

Kawahara Y., Zinshteyn B., Chendrimada T.P., Shiekhattar R., Nishikura K. RNA editing of the microRNA-151 precursor blocks cleavage by the dicer-trbp complex. EMBO Rep. 2007;8:763–769. doi: 10.1038/sj.embor.7401011. PubMed DOI PMC

Iizasa H., Wulff B.E., Alla N.R., Maragkakis M., Megraw M., Hatzigeorgiou A., Iwakiri D., Takada K., Wiedmer A., Showe L., et al. Editing of epstein-barr virus-encoded bart6 microRNAs controls their dicer targeting and consequently affects viral latency. J. Biol. Chem. 2010;285:33358–33370. doi: 10.1074/jbc.M110.138362. PubMed DOI PMC

Kawahara Y., Zinshteyn B., Sethupathy P., Iizasa H., Hatzigeorgiou A.G., Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315:1137–1140. PubMed PMC

Heale B.S., Keegan L.P., McGurk L., Michlewski G., Brindle J., Stanton C.M., Caceres J.F., O’Connell M.A. Editing independent effects of adars on the miRNA/siRNA pathways. Embo J. 2009;28:3145–3156. doi: 10.1038/emboj.2009.244. PubMed DOI PMC

Ota H., Sakurai M., Gupta R., Valente L., Wulff B.E., Ariyoshi K., Iizasa H., Davuluri R.V., Nishikura K. Adar1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell. 2013;153:575–589. doi: 10.1016/j.cell.2013.03.024. PubMed DOI PMC

Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015;33:257–290. PubMed PMC

Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA helicase rig-i has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004;5:730–737. doi: 10.1038/ni1087. PubMed DOI

Kang D.C., Gopalkrishnan R.V., Wu Q., Jankowsky E., Pyle A.M., Fisher P.B. Mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent atpase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. USA. 2002;99:637–642. doi: 10.1073/pnas.022637199. PubMed DOI PMC

Sato M., Suemori H., Hata N., Asagiri M., Ogasawara K., Nakao K., Nakaya T., Katsuki M., Noguchi S., Tanaka N., et al. Distinct and essential roles of transcription factors irf-3 and irf-7 in response to viruses for ifn-alpha/beta gene induction. Immunity. 2000;13:539–548. doi: 10.1016/S1074-7613(00)00053-4. PubMed DOI

Cattaneo R., Schmid A., Eschle D., Baczko K., ter Meulen V., Billeter M.A. Biased hypermuation and other genetic changes in defective measles viruses in human brain infections. Cell. 1988;55:255–265. doi: 10.1016/0092-8674(88)90048-7. PubMed DOI PMC

Bass B.L., Weintraub H., Cattaneo R., Billeter M.A. Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell. 1989;56 doi: 10.1016/0092-8674(89)90234-1. PubMed DOI

Taylor D.R., Puig M., Darnell M.E., Mihalik K., Feinstone S.M. New antiviral pathway that mediates hepatitis c virus replicon interferon sensitivity through adar1. J. Virol. 2005;79:6291–6298. doi: 10.1128/JVI.79.10.6291-6298.2005. PubMed DOI PMC

Ward S.V., George C.X., Welch M.J., Liou L.Y., Hahm B., Lewicki H., de la Torre J.C., Samuel C.E., Oldstone M.B. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proc. Natl. Acad. Sci. USA. 2011;108:331–336. doi: 10.1073/pnas.1017241108. PubMed DOI PMC

Samuel C.E. Adenosine deaminases acting on RNA (adars) are both antiviral and proviral. Virology. 2011;411:180–193. doi: 10.1016/j.virol.2010.12.004. PubMed DOI PMC

Hartner J.C., Schmittwolf C., Kispert A., Muller A.M., Higuchi M., Seeburg P.H. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme adar1. J. Biol. Chem. 2004;279:4894–4902. doi: 10.1074/jbc.M311347200. PubMed DOI

Hartner J.C., Walkley C.R., Lu J., Orkin S.H. Adar1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009;10:109–115. doi: 10.1038/ni.1680. PubMed DOI PMC

Wang Q., Miyakoda M., Yang W., Khillan J., Stachura D.L., Weiss M.J., Nishikura K. Stress-induced apoptosis associated with null mutation of adar1 RNA editing deaminase gene. J. Biol. Chem. 2004;279:4952–4961. doi: 10.1074/jbc.M310162200. PubMed DOI

Aicardi J., Goutieres F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 1984;15:49–54. doi: 10.1002/ana.410150109. PubMed DOI

Rice G., Patrick T., Parmar R., Taylor C.F., Aeby A., Aicardi J., Artuch R., Montalto S.A., Bacino C.A., Barroso B., et al. Clinical and molecular phenotype of aicardi-goutieres syndrome. Am. J. Hum. Genet. 2007;81:713–725. doi: 10.1086/521373. PubMed DOI PMC

Crow Y.J., Rehwinkel J. Aicardi-goutieres syndrome and related phenotypes: Linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 2009;18:R130–R136. doi: 10.1093/hmg/ddp293. PubMed DOI PMC

Rice G.I., Kasher P.R., Forte G.M., Mannion N.M., Greenwood S.M., Szynkiewicz M., Dickerson J.E., Bhaskar S.S., Zampini M., Briggs T.A., et al. Mutations in adar1 cause aicardi-goutieres syndrome associated with a type I interferon signature. Nat. Genet. 2012;44:1243–1248. doi: 10.1038/ng.2414. PubMed DOI PMC

Livingston J.H., Lin J.P., Dale R.C., Gill D., Brogan P., Munnich A., Kurian M.A., Gonzalez-Martinez V., de Goede C.G., Falconer A., et al. A type i interferon signature identifies bilateral striatal necrosis due to mutations in adar1. J. Med. Genet. 2014;51:76–82. doi: 10.1136/jmedgenet-2013-102038. PubMed DOI

Crow Y.J. Aicardi-goutieres syndrome. Handb. Clin. Neurol. 2013;113:1629–1635. PubMed

Suzuki N., Suzuki T., Inagaki K., Ito S., Kono M., Fukai K., Takama H., Sato K., Ishikawa O., Abe M., et al. Mutation analysis of the adar1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J. Investig. Dermatol. 2005;124:1186–1192. doi: 10.1111/j.0022-202X.2005.23732.x. PubMed DOI

Hou Y., Chen J., Gao M., Zhou F., Du W., Shen Y., Yang S., Zhang X.J. Five novel mutations of RNA-specific adenosine deaminase gene with dyschromatosis symmetrica hereditaria. Acta Derm.-Venereol. 2007;87:18–21. doi: 10.2340/00015555-0168. PubMed DOI

Oyama M., Shimizu H., Ohata Y., Tajima S., Nishikawa T. Dyschromatosis symmetrica hereditaria (reticulate acropigmentation of dohi): Report of a japanese family with the condition and a literature review of 185 cases. Br. J. Dermatol. 1999;140:491–496. doi: 10.1046/j.1365-2133.1999.02716.x. PubMed DOI

Miyamura Y., Suzuki T., Kono M., Inagaki K., Ito S., Suzuki N., Tomita Y. Mutations of the RNA-specific adenosine deaminase gene (dsrad) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 2003;73:693–699. doi: 10.1086/378209. PubMed DOI PMC

Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P., Hentati A., Donaldson D., Goto J., O’Regan J.P., Deng H.X., et al. Mutations in cu/zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62. doi: 10.1038/362059a0. PubMed DOI

Arai T., Hasegawa M., Akiyama H., Ikeda K., Nonaka T., Mori H., Mann D., Tsuchiya K., Yoshida M., Hashizume Y., et al. Tdp-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 2006;351:602–611. PubMed

Kawahara Y., Ito K., Sun H., Aizawa H., Kanazawa I., Kwak S. Glutamate receptors: RNA editing and death of motor neurons. Nature. 2004;427:801. doi: 10.1038/427801a. PubMed DOI

Hideyama T., Yamashita T., Suzuki T., Tsuji S., Higuchi M., Seeburg P.H., Takahashi R., Misawa H., Kwak S. Induced loss of adar2 engenders slow death of motor neurons from q/r site-unedited glur2. J. Neurosci. 2010;30:11917–11925. doi: 10.1523/JNEUROSCI.2021-10.2010. PubMed DOI PMC

Yamashita T., Chai H.L., Teramoto S., Tsuji S., Shimazaki K., Muramatsu S., Kwak S. Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous aav9-adar2 delivery to motor neurons. EMBO Mol. Med. 2013;5:1710–1719. doi: 10.1002/emmm.201302935. PubMed DOI PMC

Paz N., Levanon E.Y., Amariglio N., Heimberger A.B., Ram Z., Constantini S., Barbash Z.S., Adamsky K., Safran M., Hirschberg A., et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17:1586–1595. doi: 10.1101/gr.6493107. PubMed DOI PMC

Gallo A., Locatelli F. Adars: Allies or enemies? The importance of a-to-i RNA editing in human disease: From cancer to hiv-1. Biol. Rev. 2012;87:95–110. doi: 10.1111/j.1469-185X.2011.00186.x. PubMed DOI

Salameh A., Lee A.K., Cardo-Vila M., Nunes D.N., Efstathiou E., Staquicini F.I., Dobroff A.S., Marchio S., Navone N.M., Hosoya H., et al. Prune2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA pca3. Proc. Natl. Acad. Sci. USA. 2015;112:8403–8408. doi: 10.1073/pnas.1507882112. PubMed DOI PMC

Chen L., Li Y., Lin C.H., Chan T.H., Chow R.K., Song Y., Liu M., Yuan Y.F., Fu L., Kong K.L., et al. Recoding RNA editing of azin1 predisposes to hepatocellular carcinoma. Nat. Med. 2013;19:209–216. doi: 10.1038/nm.3043. PubMed DOI PMC

Gallo A. RNA editing enters the limelight in cancer. Nat. Med. 2013;19:130–131. doi: 10.1038/nm.3072. PubMed DOI

Chan T.H., Lin C.H., Qi L., Fei J., Li Y., Yong K.J., Liu M., Song Y., Chow R.K., Ng V.H., et al. A disrupted RNA editing balance mediated by adars (adenosine deaminases that act on RNA) in human hepatocellular carcinoma. Gut. 2014;63:832–843. doi: 10.1136/gutjnl-2012-304037. PubMed DOI PMC

Liu W.H., Chen C.H., Yeh K.H., Li C.L., Wu Y.J., Chen D.S., Chen P.J., Yeh S.H. Adar2-mediated editing of mir-214 and mir-122 precursor and antisense RNA transcripts in liver cancers. PLoS ONE. 2013;8:e81922. doi: 10.1371/journal.pone.0081922. PubMed DOI PMC

Jiang Q., Crews L.A., Barrett C.L., Chun H.J., Court A.C., Isquith J.M., Zipeto M.A., Goff D.J., Minden M., Sadarangani A., et al. Adar1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA. 2013;110:1041–1046. doi: 10.1073/pnas.1213021110. PubMed DOI PMC

Steinman R.A., Yang Q., Gasparetto M., Robinson L.J., Liu X., Lenzner D.E., Hou J., Smith C., Wang Q. Deletion of the RNA-editing enzyme adar1 causes regression of established chronic myelogenous leukemia in mice. Int. J. Cancer. 2013;132:1741–1750. doi: 10.1002/ijc.27851. PubMed DOI PMC

Cenci C., Barzotti R., Galeano F., Corbelli S., Rota R., Massimi L., di Rocco C., O’Connell M.A., Gallo A. Down-regulation of RNA editing in pediatric astrocytomas: Adar2 editing activity inhibits cell migration and proliferation. J. Biol. Chem. 2008;283:7251–7260. doi: 10.1074/jbc.M708316200. PubMed DOI

Galeano F., Rossetti C., Tomaselli S., Cifaldi L., Lezzerini M., Pezzullo M., Boldrini R., Massimi L., di Rocco C.M., Locatelli F., et al. Adar2-editing activity inhibits glioblastoma growth through the modulation of the cdc14b/skp2/p21/p27 axis. Oncogene. 2013;32:998–1009. doi: 10.1038/onc.2012.125. PubMed DOI PMC

Ishiuchi S., Tsuzuki K., Yoshida Y., Yamada N., Hagimura N., Okado H., Miwa A., Kurihara H., Nakazato Y., Tamura M., et al. Blockage of Ca(2+)-permeable ampa receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med. 2002;8:971–978. PubMed

Maas S., Patt S., Schrey M., Rich A. Underediting of glutamate receptor glur-b mRNA in malignant gliomas. Proc. Natl. Acad. Sci. USA. 2001;98:14687–14692. doi: 10.1073/pnas.251531398. PubMed DOI PMC

Alon S., Mor E., Vigneault F., Church G.M., Locatelli F., Galeano F., Gallo A., Shomron N., Eisenberg E. Systematic identification of edited microRNAs in the human brain. Genome Res. 2012;22:1533–1540. doi: 10.1101/gr.131573.111. PubMed DOI PMC

Tomaselli S., Galeano F., Alon S., Raho S., Galardi S., Polito V.A., Presutti C., Vincenti S., Eisenberg E., Locatelli F., et al. Modulation of microRNA editing, expression and processing by adar2 deaminase in glioblastoma. Genome Biol. 2015;16 doi: 10.1186/s13059-014-0575-z. PubMed DOI PMC

Choudhury Y., Tay F.C., Lam D.H., Sandanaraj E., Tang C., Ang B.T., Wang S. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J. Clin. Investig. 2012;122:4059–4076. doi: 10.1172/JCI62925. PubMed DOI PMC

Ishiuchi S., Yoshida Y., Sugawara K., Aihara M., Ohtani T., Watanabe T., Saito N., Tsuzuki K., Okado H., Miwa A., et al. Ca2+-permeable ampa receptors regulate growth of human glioblastoma via akt activation. J. Neurosci. 2007;27:7987–8001. doi: 10.1523/JNEUROSCI.2180-07.2007. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A to I editing in disease is not fake news

. 2017 Sep 02 ; 14 (9) : 1223-1231. [epub] 20170327

The Epitranscriptome and Innate Immunity

. 2015 Dec ; 11 (12) : e1005687. [epub] 20151210

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace