A mitochondria-targeted derivative of ascorbate: MitoC
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MC_U105663142
Medical Research Council - United Kingdom
MC-A070-5PS30
Medical Research Council - United Kingdom
PubMed
26453920
PubMed Central
PMC4698375
DOI
10.1016/j.freeradbiomed.2015.07.160
PII: S0891-5849(15)00589-4
Knihovny.cz E-zdroje
- Klíčová slova
- Ascorbic acid, Lipid peroxidation, Lipophilic cation, MitoC, MitoPerox, Mitochondria, Mitochondrial targeting,
- MeSH
- antioxidancia chemie farmakologie MeSH
- jaterní mitochondrie účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- kyselina askorbová chemie farmakologie MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- systémy cílené aplikace léků metody MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina askorbová MeSH
Mitochondrial oxidative damage contributes to a wide range of pathologies. One therapeutic strategy to treat these disorders is targeting antioxidants to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation. To date only hydrophobic antioxidants have been targeted to mitochondria; however, extending this approach to hydrophilic antioxidants offers new therapeutic and research opportunities. Here we report the development and characterization of MitoC, a mitochondria-targeted version of the hydrophilic antioxidant ascorbate. We show that MitoC can be taken up by mitochondria, despite the polarity and acidity of ascorbate, by using a sufficiently hydrophobic link to the TPP moiety. MitoC reacts with a range of reactive species, and within mitochondria is rapidly recycled back to the active ascorbate moiety by the glutathione and thioredoxin systems. Because of this accumulation and recycling MitoC is an effective antioxidant against mitochondrial lipid peroxidation and also decreases aconitase inactivation by superoxide. These findings show that the incorporation of TPP function can be used to target polar and acidic compounds to mitochondria, opening up the delivery of a wide range of bioactive compounds. Furthermore, MitoC has therapeutic potential as a new mitochondria-targeted antioxidant, and is a useful tool to explore the role(s) of ascorbate within mitochondria.
Department of Chemistry University of Otago P O Box 56 Dunedin 9054 New Zealand
MRC Mitochondrial Biology Unit Wellcome Trust MRC Building Cambridge CB2 0XY UK
Zobrazit více v PubMed
Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. PubMed PMC
Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antiox. Redox Signal. 2012;16:476–495. PubMed
Smith R.A.J., Hartley R.C., Cochemé H.M., Murphy M.P. Mitochondrial pharmacology. Trends Pharmacol. Sci. 2012;33:341–352. PubMed
Kelso G.F., Porteous C.M., Coulter C.V., Hughes G., Porteous W.K., Ledgerwood E.C., Smith R.A.J., Murphy M.P. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 2001;276:4588–4596. PubMed
Smith R.A.J., Murphy M.P. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Annals N. Y. Acad. Sci. 2010;1201:96–103. PubMed
Snow B.J., Rolfe F.L., Lockhart M.M., Frampton C.M., O'Sullivan J.D., Fung V., Smith R.A.J., Murphy M.P., Taylor K.M. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Movement Dis. 2010;25:1670–1674. PubMed
Gane E.J., Weilert F., Orr D.W., Keogh G.F., Gibson M., Lockhart M.M., Frampton C.M., Taylor K.M., Smith R.A.J., Murphy M.P. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30:1019–1026. PubMed
Smith R.A.J., Hartley R.C., Murphy M.P. Mitochondria-targeted small molecule therapeutics and probes. Antiox. Redox Signal. 2011;15:3021–3038. PubMed
Du J., Cullen J.J., Buettner G.R. Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta. 2012;1826:443–457. PubMed PMC
Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:1007–1024. PubMed
Cuddihy S.L., Parker A., Harwood D.T., Vissers M.C., Winterbourn C.C. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radic. Biol. Med. 2008;44:1637–1644. PubMed
Winkler B.S. Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid. Biochim. Biophys. Acta. 1992;1117:287–290. PubMed
Packer J.E., Slater T.F., Willson R.L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979;278:737–738. PubMed
Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic. Biol. Med. 2014;66:3–12. PubMed
Li X., Cobb C.E., Hill K.E., Burk R.F., May J.M. Mitochondrial uptake and recycling of ascorbic acid. Arch. Biochem. Biophys. 2001;387:143–153. PubMed
Munoz-Montesino C., Roa F.J., Pena E., Gonzalez M., Sotomayor K., Inostroza E., Munoz C.A., Gonzalez I., Maldonado M., Soliz C., Reyes A.M., Vera J.C., Rivas C.I. Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2. Free Rad. Biol. Med. 2014;70:241–254. PubMed
Lee Y.C., Huang H.Y., Chang C.J., Cheng C.H., Chen Y.T. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum. Mol. Gen. 2010;19:3721–3733. PubMed
Ross M.F., Kelso G.F., Blaikie F.H., James A.M., Cochemé H.M., Filipovska A., Da Ros T., Hurd T.R., Smith R.A.J., Murphy M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 2005;70:222–230. PubMed
Finichiu P.G., James A.M., Larsen L., Smith R.A.J., Murphy M.P. Mitochondrial accumulation of a lipophilic cation conjugated to an ionisable group depends on membrane potential, pH gradient and pKa: implications for the design of mitochondrial probes and therapies. J. Bioenerg. Biomembr. 2013;45:165–173. PubMed
Terajima T., Takai T., Nakamura H. Modified ion exchange resins with higher selectivity in bisphenol preparation. 2006 WO 2006003803 A1 20060112.
Wimalasena K., Dharmasena S., Wimalasena D.S., Hughbanks-Wheaton D.K. Reduction of dopamine beta-monooxygenase. A unified model for apparent negative cooperativity and fumarate activation. J. Biol. Chem. 1996;271:26032–26043. PubMed
Ju-Nam Y., Allen D.W., Gardiner P.H.E., Bricklebank N. ω-Thioacetylalkylphosphonium salts: precursors for the preparation of phosphonium-functionalised gold nanoparticles. J. Organometal. Chem. 2008;693:3504–3508.
Markowski T., Drescher S., Meister A., Hause G., Blume A., Dobner B. Synthesis of optically pure diglycerol tetra-ether model lipids with non-natural branching pattern. Eur. J. Org. Chem. 2011;29:5894–5904.
Grotjahn D.B., Larsen C.R., Gustafson J.L., Nair R., Sharma A. Extensive isomerization of alkenes using a bifunctional catalyst: an alkene zipper. J. Amer. Chem. Soc. 2007;129:9592–9593. PubMed
Clark T.D., Dugan E.C. Preparation of oligo(ethylene glycol)-terminated icosanedisulfides. Synthesis. 2006:1083–1086.
Asin-Cayuela J., Manas A.R., James A.M., Smith R.A.J., Murphy M.P. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Letts. 2004;571:9–16. PubMed
Ohkawa H., Ohishi N., Yagi K. Reaction of linoleic acid hydroperoxide with thiobarbituric acid. J. Lipid Res. 1978;19:1053–1057. PubMed
Brand M.D. Measurement of mitochondrial protonmotive force. In: Brown G.C., Cooper C.E., editors. Bioenergetics-a practical approach. IRL; Oxford: 1995. pp. 39–62.
Beer S.M., Taylor E.R., Brown S.E., Dahm C.C., Costa N.J., Runswick M.J., Murphy M.P. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J. Biol. Chem. 2004;279:47939–47951. PubMed
Hurd T.R., Collins Y., Abakumova I., Chouchani E.T., Baranowski B., Fearnley I.M., Prime T.A., Murphy M.P., James A.M. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species. J. Biol. Chem. 2012;287:35153–35160. PubMed PMC
James A.M., Cochemé H.M., Smith R.A.J., Murphy M.P. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J. Biol. Chem. 2005;280:21295–21312. PubMed
Ross M.F., Da Ros T., Blaikie F.H., Prime T.A., Porteous C.M., Severina I.I., Skulachev V.P., Kjaergaard H.G., Smith R.A.J., Murphy M.P. Accumulation of lipophilic dications by mitochondria and cells. Biochem. J. 2006;400:199–208. PubMed PMC
Lillig C.H., Berndt C., Holmgren A. Glutaredoxin systems. Biochim. Biophys. Acta. 2008;1780:1304–1317. PubMed
Holmgren A., Johansson C., Berndt C., Lonn M.E., Hudemann C., Lillig C.H. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 2005;33:1375–1377. PubMed
May J.M., Mendiratta S., Hill K.E., Burk R.F. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J. Biol. Chem. 1997;272:22607–22610. PubMed
Prime T.A., Forkink M., Logan A., Finichiu P.G., McLachlan J., Li Pun P.B., Koopman W.J., Larsen L., Latter M.J., Smith R.A.J., Murphy M.P. A ratiometric fluorescent probe for assessing mitochondrial phospholipid peroxidation within living cells. Free Rad. Biol. Med. 2012;53:544–553. PubMed
Cochemé H.M., Murphy M.P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 2008;283:1786–1798. PubMed
Toth I., Bridges K.R. Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch. J. Biol. Chem. 1995;270:19540–19544. PubMed
Toth I., Rogers J.T., McPhee J.A., Elliott S.M., Abramson S.L., Bridges K.R. Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells. J. Biol. Chem. 1995;270:2846–2852. PubMed