Perspective of Use of Antiviral Peptides against Influenza Virus

. 2015 Oct 20 ; 7 (10) : 5428-42. [epub] 20151020

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26492266

The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

Zobrazit více v PubMed

Wiesner J., Vilcinskas A. Antimicrobial peptides the ancient arm of the human immune system. Virulence. 2010;1:440–464. doi: 10.4161/viru.1.5.12983. PubMed DOI

Mandal S.M., Silva O.N., Franco O.L. Recombinant probiotics with antimicrobial peptides: A dual strategy to improve immune response in immunocompromised patients. Drug Discov. Today. 2014;19:1045–1050. doi: 10.1016/j.drudis.2014.05.019. PubMed DOI

Nizet V., Ohtake T., Lauth X., Trowbridge J., Rudisill J., Dorschner R.A., Pestonjamasp V., Piraino J., Huttner K., Gallo R.L. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414:454–457. doi: 10.1038/35106587. PubMed DOI

Tew G.N., Clements D., Tang H.Z., Arnt L., Scott R.W. Antimicrobial activity of an abiotic host defense peptide mimic. Biochim. Biophys. Acta. 2006;1758:1387–1392. doi: 10.1016/j.bbamem.2006.03.001. PubMed DOI

Silva R.R., Avelino K., Ribeiro K.L., Franco O.L., Oliveira M.D.L., Andrade C.A.S. Optical and dielectric sensors based on an microbial peptides for microorganism diagnosis. Front. Microbiol. 2014;5:1–7. doi: 10.3389/fmicb.2014.00443. PubMed DOI PMC

Hale J.D., Hancock R.E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 2007;5:951–959. doi: 10.1586/14787210.5.6.951. PubMed DOI

Hadley E.B., Hancock R.E.W. Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr. Top. Med. Chem. 2010;10:1872–1881. doi: 10.2174/156802610793176648. PubMed DOI

Fosgerau K., Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov. Today. 2015;20:122–128. doi: 10.1016/j.drudis.2014.10.003. PubMed DOI

Sim I.S. Potential of new drugs in the prophylaxis and therapy of influenza A virus-infections. Curr. Opin. Infect. Dis. 1989;2:411–414. doi: 10.1097/00001432-198906000-00013. DOI

Zumla A., Memish Z.A., Maeurer M., Bates M., Mwaba P., Al-Tawfiq J.A., Denning D.W., Hayden F.G., Hui D.S. Emerging novel and antimicrobial-resistant respiratory tract infections: New drug development and therapeutic options. Lancet Infect. Dis. 2014;14:1136–1149. doi: 10.1016/S1473-3099(14)70828-X. PubMed DOI PMC

Berkhout B., Sanders R.W. Molecular strategies to design an escape-proof antiviral therapy. Antivir. Res. 2011;92:7–14. PubMed

Wilson J.C., von Itzstein M. Recent strategies in the search for new anti-influenza therapies. Curr. Drug Targets. 2003;4:389–408. doi: 10.2174/1389450033491019. PubMed DOI

Air G.M., Brouillette W.J. Influenza virus antiviral targets. Antiviral Res. 2009:187–207.

Krol E., Rychowska M., Szewczyk B. Antivirals—Current trends in fighting influenza. Acta Biochim. Pol. 2014;61:495–504. PubMed

Jitendra P.K., Bansal S., Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J. Pharm. Sci. 2011;73:367–375. PubMed PMC

Vlieghe P., Lisowski V., Martinez J., Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today. 2010;15:40–56. doi: 10.1016/j.drudis.2009.10.009. PubMed DOI

Liderot K., Ahl M., Ozenci V. Secondary bacterial infections in patients with seasonal influenza A and pandemic H1N1. Biomed. Res. Int. 2013;2013:1–6. doi: 10.1155/2013/376219. PubMed DOI PMC

Teixeira V., Feio M.J., Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012;51:149–177. doi: 10.1016/j.plipres.2011.12.005. PubMed DOI

Giangaspero A., Sandri L., Tossi A. Amphipathic alpha helical antimicrobial peptides—A systematic study of the effects of structural and physical properties on biological activity. Eur. J. Biochem. 2001;268:5589–5600. doi: 10.1046/j.1432-1033.2001.02494.x. PubMed DOI

Yin L.M., Edwards M.A., Li J., Yip C.M., Deber C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem. 2012;287:7738–7745. doi: 10.1074/jbc.M111.303602. PubMed DOI PMC

Lee N., Walker E., Egerer L., Bunnell B.A., Mondal D., von Laer D., Braun S.E. The therapeutic potential of secreted antiviral entry inhibitor (SAVE) peptides expressed by transduced MSCs to block HIV infection. Mol. Ther. 2014;22:S183.

Pessi A., Ingallinella P., Bianchi E., Wang Y.J., Hrin R., Veneziano M., Bonelli F., Ketas T., Moore J., Miller M. Dramatic increase of antiviral potency of an HIV peptide fusion inhibitor by targeting to lipid rafts via addition of a cholesterol group. Biopolymers. 2009;92:302. PubMed PMC

Abe K., Nozaki A., Tamura K., Ikeda M., Naka K., Dansako H., Hoshino H., Tanaka K., Kato N. Tandem repeats of lactoferrin-derived anti-hepatitis C virus peptide enhance antiviral activity in cultured human hepatocytes. Microbiol. Immunol. 2007;51:117–125. doi: 10.1111/j.1348-0421.2007.tb03882.x. PubMed DOI

Jenssen H. Anti herpes simplex virus activity of lactoferrin/lactoferricin—An example of antiviral activity of antimicrobial protein/peptide. Cell. Mol. Life Sci. 2005;62:3002–3013. doi: 10.1007/s00018-005-5228-7. PubMed DOI PMC

Jaishankar D., Yakoub A.M., Bogdanov A., Valyi-Nagy T., Shukla D. Characterization of a proteolytically stable d-peptide that suppresses herpes simplex virus 1 infection: Implications for the development of entry-based antiviral therapy. J. Virol. 2015;89:1932–1938. doi: 10.1128/JVI.02979-14. PubMed DOI PMC

Albericio F., Kruger H.G. Therapeutic peptides foreword. Future Med. Chem. 2012;4:1527–1531. doi: 10.4155/fmc.12.94. PubMed DOI

She R., Bao H., Zhang Y., Luo D. Effect of rabbit sacculus rotundus antimicrobial peptides on serum antibody titers after vaccination with newcastle disease virus vaccine and avian influenza virus vaccine in chickens. Poult. Sci. 2008;87:81–86. PubMed

Pizzorno A., Abed Y., Boivin G. Influenza drug resistance. Semin. Respir. Crit. Care Med. 2011;32:409–422. doi: 10.1055/s-0031-1283281. PubMed DOI

Mikulasova A., Vareckova E., Fodor E. Transcription and replication of the influenza A virus genome. Acta Virol. 2000;44:273–282. PubMed

Das K., Aramini J.M., Ma L.C., Krug R.M., Arnold E. Structures of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol. 2010;17:530–538. doi: 10.1038/nsmb.1779. PubMed DOI PMC

Brunotte L., Flies J., Bolte H., Reuther P., Vreede F., Schwemmle M. The nuclear export protein of H5N1 influenza A viruses recruits matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export. J. Biol. Chem. 2014;289:20067–20077. doi: 10.1074/jbc.M114.569178. PubMed DOI PMC

Stubbs T.M., te Velthuis A.J.W. The RNA-dependent RNA polymerase of the influenza A virus. Future Virol. 2014;9:863–876. doi: 10.2217/fvl.14.66. PubMed DOI PMC

Leser G.P., Lamb R.A. Influenza virus assembly and budding in raft-derived microdomains: A quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology. 2005;342:215–227. doi: 10.1016/j.virol.2005.09.049. PubMed DOI

Takeda M., Leser G.P., Russell C.J., Lamb R.A. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl. Acad. Sci. USA. 2003;100:14610–14617. doi: 10.1073/pnas.2235620100. PubMed DOI PMC

Ma K., Wang Y.J., Wang J.F. Influenza virus assembly and budding in lipid rafts. Prog. Biochem. Biophys. 2015;42:495–500.

Rossman J.S., Jing X.H., Leser G.P., Lamb R.A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010;142:902–913. doi: 10.1016/j.cell.2010.08.029. PubMed DOI PMC

Jones J.C., Turpin E.A., Bultmann H., Brandt C.R., Schultz-Cherry S. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J. Virol. 2006;80:11960–11967. doi: 10.1128/JVI.01678-06. PubMed DOI PMC

Jones J.C., Settles E.W., Brandt C.R., Schultz-Cherry S. Identification of the minimal active sequence of an anti-influenza virus peptide. Antimicrob. Agents Chemother. 2011;55:1810–1813. doi: 10.1128/AAC.01428-10. PubMed DOI PMC

Rajik M., Jahanshiri F., Omar A.R., Ideris A., Hassan S.S., Yusoff K. Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2. Virol. J. 2009;6:1–10. doi: 10.1186/1743-422X-6-74. PubMed DOI PMC

Nicol M.Q., Ligertwood Y., Bacon M.N., Dutia B.M., Nash A.A. A novel family of peptides with potent activity against influenza A viruses. J. Gen. Virol. 2012;93:980–986. doi: 10.1099/vir.0.038679-0. PubMed DOI

Matsubara T., Onishi A., Saito T., Shimada A., Inoue H., Taki T., Nagata K., Okahata Y., Sato T. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J. Med. Chem. 2010;53:4441–4449. doi: 10.1021/jm1002183. PubMed DOI

Huttl C., Hettrich C., Miller R., Paulke B.R., Henklein P., Rawel H., Bier F.F. Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity. BMC Biotechnol. 2013;13:1–10. doi: 10.1186/1472-6750-13-51. PubMed DOI PMC

Cederlund A., Gudmundsson G.H., Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J. 2011;278:3942–3951. doi: 10.1111/j.1742-4658.2011.08302.x. PubMed DOI

Hoffmann J., Schneider C., Heinbockel L., Brandenburg K., Reimer R., Gabriel G. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antivir. Res. 2014;104:23–33. doi: 10.1016/j.antiviral.2014.01.015. PubMed DOI

Doss M., White M.R., Tecle T., Gantz D., Crouch E.C., Jung G., Ruchala P., Waring A.J., Lehrer R.I., Hartshorn K.L. Interactions of α-, β-, and θ-defensins with influenza A virus and surfactant protein D. J. Immunol. 2009;182:7878–7887. doi: 10.4049/jimmunol.0804049. PubMed DOI

Ammendolia M.G., Agamennone M., Pietrantoni A., Lannutti F., Siciliano R.A., de Giulio B., Amici C., Superti F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog. Glob. Health. 2012;106:12–19. doi: 10.1179/2047773212Y.0000000004. PubMed DOI PMC

Li Q.L., Zhao Z.H., Zhou D.H., Chen Y.Q., Hong W., Cao L.Y., Yang J.Y., Zhang Y., Shi W., Cao Z.J., et al. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32:1518–1525. doi: 10.1016/j.peptides.2011.05.015. PubMed DOI PMC

Tripathi S., Tecle T., Verma A., Crouch E., White M., Hartshorn K.L. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J. Gen. Virol. 2013;94:40–49. doi: 10.1099/vir.0.045013-0. PubMed DOI PMC

Ghanem A., Mayer D., Chase G., Tegge W., Frank R., Kochs G., Garcia-Sastre A., Schwemmle M. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 2007;81:7801–7804. doi: 10.1128/JVI.00724-07. PubMed DOI PMC

Chase G., Wunderlich K., Reuther P., Schwemmle M. Identification of influenza virus inhibitors which disrupt of viral polymerase protein-protein interactions. Methods. 2011;55:188–191. doi: 10.1016/j.ymeth.2011.08.007. PubMed DOI

Yang J., Li M.M., Shen X.T., Liu S.W. Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses. 2013;5:352–373. doi: 10.3390/v5010352. PubMed DOI PMC

Wunderlich K., Mayer D., Ranadheera C., Holler A.S., Manz B., Martin A., Chase G., Tegge W., Frank R., Kessler U., et al. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS ONE. 2009;4:1–10. doi: 10.1371/journal.pone.0007517. PubMed DOI PMC

Conti G., Magliani W., Conti S., Nencioni L., Sgarbanti R., Palamara A.T., Polonelli L. Therapeutic activity of an anti-idiotypic antibody-derived killer peptide against influenza A virus experimental infection. Antimicrob. Agents Chemother. 2008;52:4331–4337. doi: 10.1128/AAC.00506-08. PubMed DOI PMC

Salvatore M., Garcia-Sastre A., Ruchala P., Lehrer R.I., Chang T., Klotman M.E. α-Defensin inhibits influenza virus replication by cell-mediated mechanism(s) J. Infect. Dis. 2007;196:835–843. doi: 10.1086/521027. PubMed DOI

Judd A.K., Sanchez A., Bucher D.J., Huffman J.H., Bailey K., Sidwell R.W. In vivo anti-influenza virus activity of a zinc finger peptide. Antimicrob. Agents Chemother. 1997;41:687–692. PubMed PMC

Nasser E.H., Judd A.K., Sanchez A., Anastasiou D., Bucher D.J. Antiviral activity of influenza virus M1 zinc finger peptides. J. Virol. 1996;70:8639–8644. PubMed PMC

Ahmed C.M., Dabelic R., Waiboci L.W., Jager L.D., Heron L.L., Johnson H.M. SOCS-1 mimetics protect mice against lethal poxvirus infection: Identification of a novel endogenous antiviral system. J. Virol. 2009;83:1402–1415. doi: 10.1128/JVI.01138-08. PubMed DOI PMC

Chang Y.P., Chu Y.H. Using surface plasmon resonance to directly determine binding affinities of combinatorially selected cyclopeptides and their linear analogs to a streptavidin chip. Anal. Biochem. 2005;340:74–79. doi: 10.1016/j.ab.2005.01.020. PubMed DOI

Udugamasooriya D.G., Spaller M.R. Conformational constraint in protein ligand design and the inconsistency of binding entropy. Biopolymers. 2008;89:653–667. doi: 10.1002/bip.20983. PubMed DOI

Wang W., Cole A.M., Hong T., Waring A.J., Lehrer R.I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 2003;170:4708–4716. doi: 10.4049/jimmunol.170.9.4708. PubMed DOI

Doss M., White M.R., Tecle T., Hartshorn K.L. Human defensins and LL-37 in mucosal immunity. J. Leukoc. Biol. 2010;87:79–92. doi: 10.1189/jlb.0609382. PubMed DOI PMC

Gutsmann T., Razquin-Olazaran I., Kowalski I., Kaconis Y., Howe J., Bartels R., Hornef M., Schurholz T., Rossle M., Sanchez-Gomez S., et al. New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob. Agents Chemother. 2010;54:3817–3824. doi: 10.1128/AAC.00534-10. PubMed DOI PMC

Krepstakies M., Lucifora J., Nagel C.H., Zeisel M.B., Holstermann B., Hohenberg H., Kowalski I., Gutsmann T., Baumert T.F., Brandenburg K., et al. A new class of synthetic peptide inhibitors blocks attachment and entry of human pathogenic viruses. J. Infect. Dis. 2012;205:1654–1664. doi: 10.1093/infdis/jis273. PubMed DOI

Needham B.D., Trent M.S. Fortifying the barrier: The impact of lipid a remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 2013;11:467–481. doi: 10.1038/nrmicro3047. PubMed DOI PMC

Anaya-Lopez J.L., Lopez-Meza J.E., Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit. Rev. Microbiol. 2013;39:180–195. doi: 10.3109/1040841X.2012.699025. PubMed DOI

Mercer D.K., O’Neil D.A. Peptides as the next generation of anti-infectives. Future Med. Chem. 2013;5:315–337. doi: 10.4155/fmc.12.213. PubMed DOI

Marcos J.F., Gandia M. Antimicrobial peptides: To membranes and beyond. Expert Opin. Drug Discov. 2009;4:659–671. doi: 10.1517/17460440902992888. PubMed DOI

Rajendran L., Knoelker H.-J., Simons K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 2010;9:29–42. doi: 10.1038/nrd2897. PubMed DOI

Choi K.-Y.G., Mookherjee N. Multiple immune-modulatory functions of cathelicidin host defense peptides. Front. Immun. 2012;3:149. doi: 10.3389/fimmu.2012.00149. PubMed DOI PMC

Barlow P.G., Svoboda P., Mackellar A., Nash A.A., York I.A., Pohl J., Davidson D.J., Donis R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE. 2011;6:1–9. doi: 10.1371/journal.pone.0025333. PubMed DOI PMC

Dean R.E., O’Brien L.M., Thwaite J.E., Fox M.A., Atkins H., Ulaeto D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides. 2010;31:1966–1972. PubMed

Pietrantoni A., Di Biase A.M., Tinari A., Marchetti M., Valenti P., Seganti L., Superti F. Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob. Agents Chemother. 2003;47:2688–2691. PubMed PMC

Pietrantoni A., Dofrelli E., Tinari A., Ammendolia M.G., Puzelli S., Fabiani C., Donatelli I., Superti F. Bovine lactoferrin inhibits influenza A virus induced programmed cell death in vitro. Biometals. 2010;23:465–475. doi: 10.1007/s10534-010-9323-3. PubMed DOI

Balcao V.M., Costa C.I., Matos C.M., Moutinho C.G., Amorim M., Pintado M.E., Gomes A.P., Vila M.M., Teixeira J.A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 2013;32:425–431. doi: 10.1016/j.foodhyd.2013.02.004. DOI

Bibi S., Lattmann E., Mohammed A.R., Perrie Y. Trigger release liposome systems: Local and remote controlled delivery? J. Microencapsul. 2012;29:262–276. doi: 10.3109/02652048.2011.646330. PubMed DOI

Raghuraman H., Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007;27:189–223. doi: 10.1007/s10540-006-9030-z. PubMed DOI

Lee M.T., Hung W.C., Chen F.Y., Huang H.W. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc. Natl. Acad. Sci. USA. 2008;105:5087–5092. doi: 10.1073/pnas.0710625105. PubMed DOI PMC

Ladokhin A.S., White S.H. ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta. 2001;1514:253–260. doi: 10.1016/S0005-2736(01)00382-0. PubMed DOI

Zhang N.Z., Qi J.X., Feng S.J., Gao F., Liu J., Pan X.C., Chen R., Li Q.R., Chen Z.S., Li X.Y., et al. Crystal structure of swine major histocompatibility complex class I SLA-1*0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic t lymphocyte epitope peptides. J. Virol. 2011;85:11709–11724. doi: 10.1128/JVI.05040-11. PubMed DOI PMC

Gordon-Grossman M., Zimmermann H., Wolf S.G., Shai Y., Goldfarb D. Investigation of model membrane disruption mechanism by melittin using pulse electron paramagnetic resonance spectroscopy and cryogenic transmission electron microscopy. J. Phys. Chem. B. 2012;116:179–188. doi: 10.1021/jp207159z. PubMed DOI

Gordon-Grossman M., Gofman Y., Zimmermann H., Frydman V., Shai Y., Ben-Tal N., Goldfarb D. A combined pulse EPR and monte carlo simulation study provides molecular insight on peptide-membrane interactions. J. Phys. Chem. B. 2009;113:15128. doi: 10.1021/jp909559d. PubMed DOI

Oren Z., Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers. 1998;47:451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. PubMed DOI

Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim. Biophys. Acta. 1995;1235:452–460. doi: 10.1016/0005-2736(95)80035-E. PubMed DOI

Lu N.Y., Yang K., Li J.L., Yuan B., Ma Y.Q. Vesicle deposition and subsequent membrane-melittin interactions on different substrates: A QCM-D experiment. Biochim. Biophys. Acta. 2013;1828:1918–1925. doi: 10.1016/j.bbamem.2013.04.013. PubMed DOI

Li W.Y., Yang X.F., Jiang Y., Wang B.N., Yang Y., Jiang Z.H., Li M.Y. Inhibition of influenza A virus replication by RNA interference targeted against the PB1 subunit of the RNA polymerase gene. Arch. Virol. 2011;156:1979–1987. doi: 10.1007/s00705-011-1087-8. PubMed DOI

Huet S., Avilov S.V., Ferbitz L., Daigle N., Cusack S., Ellenberg J. Nuclear import and assembly of influenza A virus RNA polymerase studied in live cells by fluorescence cross-correlation spectroscopy. J. Virol. 2010;84:1254–1264. doi: 10.1128/JVI.01533-09. PubMed DOI PMC

Manz B., Gotz V., Wunderlich K., Eisel J., Kirchmair J., Stech J., Stech O., Chase G., Frank R., Schwemmle M. Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza A virus. J. Biol. Chem. 2011;286:8414–8424. doi: 10.1074/jbc.M110.205534. PubMed DOI PMC

Ruigrok R.W.H., Crepin T., Hart D.J., Cusack S. Towards an atomic resolution understanding of the influenza virus replication machinery. Curr. Opin. Struct. Biol. 2010;20:104–113. doi: 10.1016/j.sbi.2009.12.007. PubMed DOI

Engler A.C., Shukla A., Puranam S., Buss H.G., Jreige N., Hammond P.T. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules. 2011;12:1666–1674. doi: 10.1021/bm2000583. PubMed DOI

Ma Q.Q., Shan A.S., Dong N., Gu Y., Sun W.Y., Hu W.N., Feng X.J. Cell selectivity and interaction with model membranes of Val/Arg-rich peptides. J. Pept. Sci. 2011;17:520–526. doi: 10.1002/psc.1360. PubMed DOI

Fechter P., Mingay L., Sharps J., Chambers A., Fodor E., Brownlee G.G. Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J. Biol. Chem. 2003;278:20381–20388. doi: 10.1074/jbc.M300130200. PubMed DOI

Dias A., Bouvier D., Crepin T., McCarthy A.A., Hart D.J., Baudin F., Cusack S., Ruigrok R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009;458:914–918. doi: 10.1038/nature07745. PubMed DOI

Yuan P.W., Bartlam M., Lou Z.Y., Chen S.D., Zhou J., He X.J., Lv Z.Y., Ge R.W., Li X.M., Deng T., et al. Crystal structure of an avian influenza polymerase PA(n) reveals an endonuclease active site. Nature. 2009;458:909–913. doi: 10.1038/nature07720. PubMed DOI

Zhu X.Y., Yu W.L., McBride R., Li Y., Chen L.M., Donis R.O., Tong S.X., Paulson J.C., Wilson I.A. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc. Natl. Acad. Sci. USA. 2013;110:1458–1463. doi: 10.1073/pnas.1218509110. PubMed DOI PMC

Stephens C., Kazan K., Goulter K.C., Maclean D.J., Manners J.M. The mode of action of the plant antimicrobial peptide MiAMP1 differs from that of its structural homologue, the yeast killer toxin WmKT. FEMS Microbiol. Lett. 2005;243:205–210. doi: 10.1016/j.femsle.2004.12.007. PubMed DOI

Wilson S.S., Wiens M.E., Smith J.G. Antiviral mechanisms of human defensins. J. Mol. Biol. 2013;425:4965–4980. doi: 10.1016/j.jmb.2013.09.038. PubMed DOI PMC

Shah R., Chang T.L. Small Wonders: Peptides for Disease Control. American Chemical Society; Washington, DC, USA: 2012. Defensins in viral infection; pp. 137–171.

Mohan T., Sharma C., Bhat A.A., Rao D.N. Modulation of HIV peptide antigen specific cellular immune response by synthetic α- and β-defensin peptides. Vaccine. 2013;31:1707–1716. doi: 10.1016/j.vaccine.2013.01.041. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace