Perspective of Use of Antiviral Peptides against Influenza Virus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26492266
PubMed Central
PMC4632391
DOI
10.3390/v7102883
PII: v7102883
Knihovny.cz E-zdroje
- Klíčová slova
- cationic peptides, hemagglutinin, influenza virus, membrane fusion, neuraminidase, viral replication,
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- chřipka lidská farmakoterapie MeSH
- infekce viry z čeledi Orthomyxoviridae farmakoterapie MeSH
- internalizace viru účinky léků MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- objevování léků trendy MeSH
- Orthomyxoviridae účinky léků fyziologie MeSH
- peptidy farmakologie terapeutické užití MeSH
- replikace viru účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- peptidy MeSH
The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.
Institute of Virology Slovak Academy of Sciences Dubravska cesta 9 84505 Bratislava Slovak Republic
Wool and Knitting Research Institute Brno Sujanovo namesti 3 Brno CZ 602 00 Czech Republic
Zobrazit více v PubMed
Wiesner J., Vilcinskas A. Antimicrobial peptides the ancient arm of the human immune system. Virulence. 2010;1:440–464. doi: 10.4161/viru.1.5.12983. PubMed DOI
Mandal S.M., Silva O.N., Franco O.L. Recombinant probiotics with antimicrobial peptides: A dual strategy to improve immune response in immunocompromised patients. Drug Discov. Today. 2014;19:1045–1050. doi: 10.1016/j.drudis.2014.05.019. PubMed DOI
Nizet V., Ohtake T., Lauth X., Trowbridge J., Rudisill J., Dorschner R.A., Pestonjamasp V., Piraino J., Huttner K., Gallo R.L. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414:454–457. doi: 10.1038/35106587. PubMed DOI
Tew G.N., Clements D., Tang H.Z., Arnt L., Scott R.W. Antimicrobial activity of an abiotic host defense peptide mimic. Biochim. Biophys. Acta. 2006;1758:1387–1392. doi: 10.1016/j.bbamem.2006.03.001. PubMed DOI
Silva R.R., Avelino K., Ribeiro K.L., Franco O.L., Oliveira M.D.L., Andrade C.A.S. Optical and dielectric sensors based on an microbial peptides for microorganism diagnosis. Front. Microbiol. 2014;5:1–7. doi: 10.3389/fmicb.2014.00443. PubMed DOI PMC
Hale J.D., Hancock R.E. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 2007;5:951–959. doi: 10.1586/14787210.5.6.951. PubMed DOI
Hadley E.B., Hancock R.E.W. Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr. Top. Med. Chem. 2010;10:1872–1881. doi: 10.2174/156802610793176648. PubMed DOI
Fosgerau K., Hoffmann T. Peptide therapeutics: Current status and future directions. Drug Discov. Today. 2015;20:122–128. doi: 10.1016/j.drudis.2014.10.003. PubMed DOI
Sim I.S. Potential of new drugs in the prophylaxis and therapy of influenza A virus-infections. Curr. Opin. Infect. Dis. 1989;2:411–414. doi: 10.1097/00001432-198906000-00013. DOI
Zumla A., Memish Z.A., Maeurer M., Bates M., Mwaba P., Al-Tawfiq J.A., Denning D.W., Hayden F.G., Hui D.S. Emerging novel and antimicrobial-resistant respiratory tract infections: New drug development and therapeutic options. Lancet Infect. Dis. 2014;14:1136–1149. doi: 10.1016/S1473-3099(14)70828-X. PubMed DOI PMC
Berkhout B., Sanders R.W. Molecular strategies to design an escape-proof antiviral therapy. Antivir. Res. 2011;92:7–14. PubMed
Wilson J.C., von Itzstein M. Recent strategies in the search for new anti-influenza therapies. Curr. Drug Targets. 2003;4:389–408. doi: 10.2174/1389450033491019. PubMed DOI
Air G.M., Brouillette W.J. Influenza virus antiviral targets. Antiviral Res. 2009:187–207.
Krol E., Rychowska M., Szewczyk B. Antivirals—Current trends in fighting influenza. Acta Biochim. Pol. 2014;61:495–504. PubMed
Jitendra P.K., Bansal S., Banik A. Noninvasive routes of proteins and peptides drug delivery. Indian J. Pharm. Sci. 2011;73:367–375. PubMed PMC
Vlieghe P., Lisowski V., Martinez J., Khrestchatisky M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today. 2010;15:40–56. doi: 10.1016/j.drudis.2009.10.009. PubMed DOI
Liderot K., Ahl M., Ozenci V. Secondary bacterial infections in patients with seasonal influenza A and pandemic H1N1. Biomed. Res. Int. 2013;2013:1–6. doi: 10.1155/2013/376219. PubMed DOI PMC
Teixeira V., Feio M.J., Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res. 2012;51:149–177. doi: 10.1016/j.plipres.2011.12.005. PubMed DOI
Giangaspero A., Sandri L., Tossi A. Amphipathic alpha helical antimicrobial peptides—A systematic study of the effects of structural and physical properties on biological activity. Eur. J. Biochem. 2001;268:5589–5600. doi: 10.1046/j.1432-1033.2001.02494.x. PubMed DOI
Yin L.M., Edwards M.A., Li J., Yip C.M., Deber C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem. 2012;287:7738–7745. doi: 10.1074/jbc.M111.303602. PubMed DOI PMC
Lee N., Walker E., Egerer L., Bunnell B.A., Mondal D., von Laer D., Braun S.E. The therapeutic potential of secreted antiviral entry inhibitor (SAVE) peptides expressed by transduced MSCs to block HIV infection. Mol. Ther. 2014;22:S183.
Pessi A., Ingallinella P., Bianchi E., Wang Y.J., Hrin R., Veneziano M., Bonelli F., Ketas T., Moore J., Miller M. Dramatic increase of antiviral potency of an HIV peptide fusion inhibitor by targeting to lipid rafts via addition of a cholesterol group. Biopolymers. 2009;92:302. PubMed PMC
Abe K., Nozaki A., Tamura K., Ikeda M., Naka K., Dansako H., Hoshino H., Tanaka K., Kato N. Tandem repeats of lactoferrin-derived anti-hepatitis C virus peptide enhance antiviral activity in cultured human hepatocytes. Microbiol. Immunol. 2007;51:117–125. doi: 10.1111/j.1348-0421.2007.tb03882.x. PubMed DOI
Jenssen H. Anti herpes simplex virus activity of lactoferrin/lactoferricin—An example of antiviral activity of antimicrobial protein/peptide. Cell. Mol. Life Sci. 2005;62:3002–3013. doi: 10.1007/s00018-005-5228-7. PubMed DOI PMC
Jaishankar D., Yakoub A.M., Bogdanov A., Valyi-Nagy T., Shukla D. Characterization of a proteolytically stable d-peptide that suppresses herpes simplex virus 1 infection: Implications for the development of entry-based antiviral therapy. J. Virol. 2015;89:1932–1938. doi: 10.1128/JVI.02979-14. PubMed DOI PMC
Albericio F., Kruger H.G. Therapeutic peptides foreword. Future Med. Chem. 2012;4:1527–1531. doi: 10.4155/fmc.12.94. PubMed DOI
She R., Bao H., Zhang Y., Luo D. Effect of rabbit sacculus rotundus antimicrobial peptides on serum antibody titers after vaccination with newcastle disease virus vaccine and avian influenza virus vaccine in chickens. Poult. Sci. 2008;87:81–86. PubMed
Pizzorno A., Abed Y., Boivin G. Influenza drug resistance. Semin. Respir. Crit. Care Med. 2011;32:409–422. doi: 10.1055/s-0031-1283281. PubMed DOI
Mikulasova A., Vareckova E., Fodor E. Transcription and replication of the influenza A virus genome. Acta Virol. 2000;44:273–282. PubMed
Das K., Aramini J.M., Ma L.C., Krug R.M., Arnold E. Structures of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol. 2010;17:530–538. doi: 10.1038/nsmb.1779. PubMed DOI PMC
Brunotte L., Flies J., Bolte H., Reuther P., Vreede F., Schwemmle M. The nuclear export protein of H5N1 influenza A viruses recruits matrix 1 (M1) protein to the viral ribonucleoprotein to mediate nuclear export. J. Biol. Chem. 2014;289:20067–20077. doi: 10.1074/jbc.M114.569178. PubMed DOI PMC
Stubbs T.M., te Velthuis A.J.W. The RNA-dependent RNA polymerase of the influenza A virus. Future Virol. 2014;9:863–876. doi: 10.2217/fvl.14.66. PubMed DOI PMC
Leser G.P., Lamb R.A. Influenza virus assembly and budding in raft-derived microdomains: A quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology. 2005;342:215–227. doi: 10.1016/j.virol.2005.09.049. PubMed DOI
Takeda M., Leser G.P., Russell C.J., Lamb R.A. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc. Natl. Acad. Sci. USA. 2003;100:14610–14617. doi: 10.1073/pnas.2235620100. PubMed DOI PMC
Ma K., Wang Y.J., Wang J.F. Influenza virus assembly and budding in lipid rafts. Prog. Biochem. Biophys. 2015;42:495–500.
Rossman J.S., Jing X.H., Leser G.P., Lamb R.A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010;142:902–913. doi: 10.1016/j.cell.2010.08.029. PubMed DOI PMC
Jones J.C., Turpin E.A., Bultmann H., Brandt C.R., Schultz-Cherry S. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J. Virol. 2006;80:11960–11967. doi: 10.1128/JVI.01678-06. PubMed DOI PMC
Jones J.C., Settles E.W., Brandt C.R., Schultz-Cherry S. Identification of the minimal active sequence of an anti-influenza virus peptide. Antimicrob. Agents Chemother. 2011;55:1810–1813. doi: 10.1128/AAC.01428-10. PubMed DOI PMC
Rajik M., Jahanshiri F., Omar A.R., Ideris A., Hassan S.S., Yusoff K. Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2. Virol. J. 2009;6:1–10. doi: 10.1186/1743-422X-6-74. PubMed DOI PMC
Nicol M.Q., Ligertwood Y., Bacon M.N., Dutia B.M., Nash A.A. A novel family of peptides with potent activity against influenza A viruses. J. Gen. Virol. 2012;93:980–986. doi: 10.1099/vir.0.038679-0. PubMed DOI
Matsubara T., Onishi A., Saito T., Shimada A., Inoue H., Taki T., Nagata K., Okahata Y., Sato T. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J. Med. Chem. 2010;53:4441–4449. doi: 10.1021/jm1002183. PubMed DOI
Huttl C., Hettrich C., Miller R., Paulke B.R., Henklein P., Rawel H., Bier F.F. Self-assembled peptide amphiphiles function as multivalent binder with increased hemagglutinin affinity. BMC Biotechnol. 2013;13:1–10. doi: 10.1186/1472-6750-13-51. PubMed DOI PMC
Cederlund A., Gudmundsson G.H., Agerberth B. Antimicrobial peptides important in innate immunity. FEBS J. 2011;278:3942–3951. doi: 10.1111/j.1742-4658.2011.08302.x. PubMed DOI
Hoffmann J., Schneider C., Heinbockel L., Brandenburg K., Reimer R., Gabriel G. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment. Antivir. Res. 2014;104:23–33. doi: 10.1016/j.antiviral.2014.01.015. PubMed DOI
Doss M., White M.R., Tecle T., Gantz D., Crouch E.C., Jung G., Ruchala P., Waring A.J., Lehrer R.I., Hartshorn K.L. Interactions of α-, β-, and θ-defensins with influenza A virus and surfactant protein D. J. Immunol. 2009;182:7878–7887. doi: 10.4049/jimmunol.0804049. PubMed DOI
Ammendolia M.G., Agamennone M., Pietrantoni A., Lannutti F., Siciliano R.A., de Giulio B., Amici C., Superti F. Bovine lactoferrin-derived peptides as novel broad-spectrum inhibitors of influenza virus. Pathog. Glob. Health. 2012;106:12–19. doi: 10.1179/2047773212Y.0000000004. PubMed DOI PMC
Li Q.L., Zhao Z.H., Zhou D.H., Chen Y.Q., Hong W., Cao L.Y., Yang J.Y., Zhang Y., Shi W., Cao Z.J., et al. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32:1518–1525. doi: 10.1016/j.peptides.2011.05.015. PubMed DOI PMC
Tripathi S., Tecle T., Verma A., Crouch E., White M., Hartshorn K.L. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J. Gen. Virol. 2013;94:40–49. doi: 10.1099/vir.0.045013-0. PubMed DOI PMC
Ghanem A., Mayer D., Chase G., Tegge W., Frank R., Kochs G., Garcia-Sastre A., Schwemmle M. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 2007;81:7801–7804. doi: 10.1128/JVI.00724-07. PubMed DOI PMC
Chase G., Wunderlich K., Reuther P., Schwemmle M. Identification of influenza virus inhibitors which disrupt of viral polymerase protein-protein interactions. Methods. 2011;55:188–191. doi: 10.1016/j.ymeth.2011.08.007. PubMed DOI
Yang J., Li M.M., Shen X.T., Liu S.W. Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses. 2013;5:352–373. doi: 10.3390/v5010352. PubMed DOI PMC
Wunderlich K., Mayer D., Ranadheera C., Holler A.S., Manz B., Martin A., Chase G., Tegge W., Frank R., Kessler U., et al. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS ONE. 2009;4:1–10. doi: 10.1371/journal.pone.0007517. PubMed DOI PMC
Conti G., Magliani W., Conti S., Nencioni L., Sgarbanti R., Palamara A.T., Polonelli L. Therapeutic activity of an anti-idiotypic antibody-derived killer peptide against influenza A virus experimental infection. Antimicrob. Agents Chemother. 2008;52:4331–4337. doi: 10.1128/AAC.00506-08. PubMed DOI PMC
Salvatore M., Garcia-Sastre A., Ruchala P., Lehrer R.I., Chang T., Klotman M.E. α-Defensin inhibits influenza virus replication by cell-mediated mechanism(s) J. Infect. Dis. 2007;196:835–843. doi: 10.1086/521027. PubMed DOI
Judd A.K., Sanchez A., Bucher D.J., Huffman J.H., Bailey K., Sidwell R.W. In vivo anti-influenza virus activity of a zinc finger peptide. Antimicrob. Agents Chemother. 1997;41:687–692. PubMed PMC
Nasser E.H., Judd A.K., Sanchez A., Anastasiou D., Bucher D.J. Antiviral activity of influenza virus M1 zinc finger peptides. J. Virol. 1996;70:8639–8644. PubMed PMC
Ahmed C.M., Dabelic R., Waiboci L.W., Jager L.D., Heron L.L., Johnson H.M. SOCS-1 mimetics protect mice against lethal poxvirus infection: Identification of a novel endogenous antiviral system. J. Virol. 2009;83:1402–1415. doi: 10.1128/JVI.01138-08. PubMed DOI PMC
Chang Y.P., Chu Y.H. Using surface plasmon resonance to directly determine binding affinities of combinatorially selected cyclopeptides and their linear analogs to a streptavidin chip. Anal. Biochem. 2005;340:74–79. doi: 10.1016/j.ab.2005.01.020. PubMed DOI
Udugamasooriya D.G., Spaller M.R. Conformational constraint in protein ligand design and the inconsistency of binding entropy. Biopolymers. 2008;89:653–667. doi: 10.1002/bip.20983. PubMed DOI
Wang W., Cole A.M., Hong T., Waring A.J., Lehrer R.I. Retrocyclin, an antiretroviral θ-defensin, is a lectin. J. Immunol. 2003;170:4708–4716. doi: 10.4049/jimmunol.170.9.4708. PubMed DOI
Doss M., White M.R., Tecle T., Hartshorn K.L. Human defensins and LL-37 in mucosal immunity. J. Leukoc. Biol. 2010;87:79–92. doi: 10.1189/jlb.0609382. PubMed DOI PMC
Gutsmann T., Razquin-Olazaran I., Kowalski I., Kaconis Y., Howe J., Bartels R., Hornef M., Schurholz T., Rossle M., Sanchez-Gomez S., et al. New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob. Agents Chemother. 2010;54:3817–3824. doi: 10.1128/AAC.00534-10. PubMed DOI PMC
Krepstakies M., Lucifora J., Nagel C.H., Zeisel M.B., Holstermann B., Hohenberg H., Kowalski I., Gutsmann T., Baumert T.F., Brandenburg K., et al. A new class of synthetic peptide inhibitors blocks attachment and entry of human pathogenic viruses. J. Infect. Dis. 2012;205:1654–1664. doi: 10.1093/infdis/jis273. PubMed DOI
Needham B.D., Trent M.S. Fortifying the barrier: The impact of lipid a remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 2013;11:467–481. doi: 10.1038/nrmicro3047. PubMed DOI PMC
Anaya-Lopez J.L., Lopez-Meza J.E., Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit. Rev. Microbiol. 2013;39:180–195. doi: 10.3109/1040841X.2012.699025. PubMed DOI
Mercer D.K., O’Neil D.A. Peptides as the next generation of anti-infectives. Future Med. Chem. 2013;5:315–337. doi: 10.4155/fmc.12.213. PubMed DOI
Marcos J.F., Gandia M. Antimicrobial peptides: To membranes and beyond. Expert Opin. Drug Discov. 2009;4:659–671. doi: 10.1517/17460440902992888. PubMed DOI
Rajendran L., Knoelker H.-J., Simons K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 2010;9:29–42. doi: 10.1038/nrd2897. PubMed DOI
Choi K.-Y.G., Mookherjee N. Multiple immune-modulatory functions of cathelicidin host defense peptides. Front. Immun. 2012;3:149. doi: 10.3389/fimmu.2012.00149. PubMed DOI PMC
Barlow P.G., Svoboda P., Mackellar A., Nash A.A., York I.A., Pohl J., Davidson D.J., Donis R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE. 2011;6:1–9. doi: 10.1371/journal.pone.0025333. PubMed DOI PMC
Dean R.E., O’Brien L.M., Thwaite J.E., Fox M.A., Atkins H., Ulaeto D.O. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides. 2010;31:1966–1972. PubMed
Pietrantoni A., Di Biase A.M., Tinari A., Marchetti M., Valenti P., Seganti L., Superti F. Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob. Agents Chemother. 2003;47:2688–2691. PubMed PMC
Pietrantoni A., Dofrelli E., Tinari A., Ammendolia M.G., Puzelli S., Fabiani C., Donatelli I., Superti F. Bovine lactoferrin inhibits influenza A virus induced programmed cell death in vitro. Biometals. 2010;23:465–475. doi: 10.1007/s10534-010-9323-3. PubMed DOI
Balcao V.M., Costa C.I., Matos C.M., Moutinho C.G., Amorim M., Pintado M.E., Gomes A.P., Vila M.M., Teixeira J.A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 2013;32:425–431. doi: 10.1016/j.foodhyd.2013.02.004. DOI
Bibi S., Lattmann E., Mohammed A.R., Perrie Y. Trigger release liposome systems: Local and remote controlled delivery? J. Microencapsul. 2012;29:262–276. doi: 10.3109/02652048.2011.646330. PubMed DOI
Raghuraman H., Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007;27:189–223. doi: 10.1007/s10540-006-9030-z. PubMed DOI
Lee M.T., Hung W.C., Chen F.Y., Huang H.W. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc. Natl. Acad. Sci. USA. 2008;105:5087–5092. doi: 10.1073/pnas.0710625105. PubMed DOI PMC
Ladokhin A.S., White S.H. ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim. Biophys. Acta. 2001;1514:253–260. doi: 10.1016/S0005-2736(01)00382-0. PubMed DOI
Zhang N.Z., Qi J.X., Feng S.J., Gao F., Liu J., Pan X.C., Chen R., Li Q.R., Chen Z.S., Li X.Y., et al. Crystal structure of swine major histocompatibility complex class I SLA-1*0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic t lymphocyte epitope peptides. J. Virol. 2011;85:11709–11724. doi: 10.1128/JVI.05040-11. PubMed DOI PMC
Gordon-Grossman M., Zimmermann H., Wolf S.G., Shai Y., Goldfarb D. Investigation of model membrane disruption mechanism by melittin using pulse electron paramagnetic resonance spectroscopy and cryogenic transmission electron microscopy. J. Phys. Chem. B. 2012;116:179–188. doi: 10.1021/jp207159z. PubMed DOI
Gordon-Grossman M., Gofman Y., Zimmermann H., Frydman V., Shai Y., Ben-Tal N., Goldfarb D. A combined pulse EPR and monte carlo simulation study provides molecular insight on peptide-membrane interactions. J. Phys. Chem. B. 2009;113:15128. doi: 10.1021/jp909559d. PubMed DOI
Oren Z., Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers. 1998;47:451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. PubMed DOI
Benachir T., Lafleur M. Study of vesicle leakage induced by melittin. Biochim. Biophys. Acta. 1995;1235:452–460. doi: 10.1016/0005-2736(95)80035-E. PubMed DOI
Lu N.Y., Yang K., Li J.L., Yuan B., Ma Y.Q. Vesicle deposition and subsequent membrane-melittin interactions on different substrates: A QCM-D experiment. Biochim. Biophys. Acta. 2013;1828:1918–1925. doi: 10.1016/j.bbamem.2013.04.013. PubMed DOI
Li W.Y., Yang X.F., Jiang Y., Wang B.N., Yang Y., Jiang Z.H., Li M.Y. Inhibition of influenza A virus replication by RNA interference targeted against the PB1 subunit of the RNA polymerase gene. Arch. Virol. 2011;156:1979–1987. doi: 10.1007/s00705-011-1087-8. PubMed DOI
Huet S., Avilov S.V., Ferbitz L., Daigle N., Cusack S., Ellenberg J. Nuclear import and assembly of influenza A virus RNA polymerase studied in live cells by fluorescence cross-correlation spectroscopy. J. Virol. 2010;84:1254–1264. doi: 10.1128/JVI.01533-09. PubMed DOI PMC
Manz B., Gotz V., Wunderlich K., Eisel J., Kirchmair J., Stech J., Stech O., Chase G., Frank R., Schwemmle M. Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza A virus. J. Biol. Chem. 2011;286:8414–8424. doi: 10.1074/jbc.M110.205534. PubMed DOI PMC
Ruigrok R.W.H., Crepin T., Hart D.J., Cusack S. Towards an atomic resolution understanding of the influenza virus replication machinery. Curr. Opin. Struct. Biol. 2010;20:104–113. doi: 10.1016/j.sbi.2009.12.007. PubMed DOI
Engler A.C., Shukla A., Puranam S., Buss H.G., Jreige N., Hammond P.T. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules. 2011;12:1666–1674. doi: 10.1021/bm2000583. PubMed DOI
Ma Q.Q., Shan A.S., Dong N., Gu Y., Sun W.Y., Hu W.N., Feng X.J. Cell selectivity and interaction with model membranes of Val/Arg-rich peptides. J. Pept. Sci. 2011;17:520–526. doi: 10.1002/psc.1360. PubMed DOI
Fechter P., Mingay L., Sharps J., Chambers A., Fodor E., Brownlee G.G. Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J. Biol. Chem. 2003;278:20381–20388. doi: 10.1074/jbc.M300130200. PubMed DOI
Dias A., Bouvier D., Crepin T., McCarthy A.A., Hart D.J., Baudin F., Cusack S., Ruigrok R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009;458:914–918. doi: 10.1038/nature07745. PubMed DOI
Yuan P.W., Bartlam M., Lou Z.Y., Chen S.D., Zhou J., He X.J., Lv Z.Y., Ge R.W., Li X.M., Deng T., et al. Crystal structure of an avian influenza polymerase PA(n) reveals an endonuclease active site. Nature. 2009;458:909–913. doi: 10.1038/nature07720. PubMed DOI
Zhu X.Y., Yu W.L., McBride R., Li Y., Chen L.M., Donis R.O., Tong S.X., Paulson J.C., Wilson I.A. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc. Natl. Acad. Sci. USA. 2013;110:1458–1463. doi: 10.1073/pnas.1218509110. PubMed DOI PMC
Stephens C., Kazan K., Goulter K.C., Maclean D.J., Manners J.M. The mode of action of the plant antimicrobial peptide MiAMP1 differs from that of its structural homologue, the yeast killer toxin WmKT. FEMS Microbiol. Lett. 2005;243:205–210. doi: 10.1016/j.femsle.2004.12.007. PubMed DOI
Wilson S.S., Wiens M.E., Smith J.G. Antiviral mechanisms of human defensins. J. Mol. Biol. 2013;425:4965–4980. doi: 10.1016/j.jmb.2013.09.038. PubMed DOI PMC
Shah R., Chang T.L. Small Wonders: Peptides for Disease Control. American Chemical Society; Washington, DC, USA: 2012. Defensins in viral infection; pp. 137–171.
Mohan T., Sharma C., Bhat A.A., Rao D.N. Modulation of HIV peptide antigen specific cellular immune response by synthetic α- and β-defensin peptides. Vaccine. 2013;31:1707–1716. doi: 10.1016/j.vaccine.2013.01.041. PubMed DOI