Asymptotic stability of tri-trophic food chains sharing a common resource
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26498384
DOI
10.1016/j.mbs.2015.10.005
PII: S0025-5564(15)00211-4
Knihovny.cz E-zdroje
- Klíčová slova
- Competition, Food webs, Lyapunov function, Resilience, Stability,
- MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- ekosystém MeSH
- matematické pojmy MeSH
- potravní řetězec * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain described by the Lotka-Volterra type dynamics is globally asymptotically stable whenever it exists. This article extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Numerical simulations show that as the number of food chains increases, the real part of the leading eigenvalue, while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of food chains in the web.
Citace poskytuje Crossref.org