Asymptotic stability of tri-trophic food chains sharing a common resource

. 2015 Dec ; 270 (Pt A) : 90-4. [epub] 20151020

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26498384
Odkazy

PubMed 26498384
DOI 10.1016/j.mbs.2015.10.005
PII: S0025-5564(15)00211-4
Knihovny.cz E-zdroje

One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain described by the Lotka-Volterra type dynamics is globally asymptotically stable whenever it exists. This article extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Numerical simulations show that as the number of food chains increases, the real part of the leading eigenvalue, while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of food chains in the web.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...