Mycorrhiza alters the profile of root hairs in trifoliate orange

. 2016 Apr ; 26 (3) : 237-47. [epub] 20151024

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26499883
Odkazy

PubMed 26499883
DOI 10.1007/s00572-015-0666-z
PII: 10.1007/s00572-015-0666-z
Knihovny.cz E-zdroje

Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.

Zobrazit více v PubMed

J Exp Bot. 2006;57(6):1299-308 PubMed

Elife. 2014 Apr 25;:null PubMed

New Phytol. 2013 Mar;197(4):1130-41 PubMed

Ann Bot. 2013 May;111(5):769-79 PubMed

Mycorrhiza. 2012 May;22(4):259-69 PubMed

Plant Physiol. 2015 Feb;167(2):545-57 PubMed

PLoS One. 2014 Jun 26;9(6):e100132 PubMed

New Phytol. 2014 Oct;204(1):192-200 PubMed

Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E5025-34 PubMed

Int J Mol Sci. 2013 Apr 24;14(5):8740-74 PubMed

Plant Physiol. 2011 Jul;156(3):1050-7 PubMed

Microsc Res Tech. 1993 Dec 15;26(6):489-95 PubMed

Plant Sci. 2012 May;187:10-8 PubMed

J Exp Bot. 2003 Oct;54(391):2351-61 PubMed

J Plant Physiol. 2009 Feb 15;166(3):324-8 PubMed

Curr Opin Plant Biol. 2010 Jun;13(3):288-98 PubMed

Planta. 2005 Nov;222(4):709-15 PubMed

J Plant Physiol. 2013 Jan 15;170(2):185-95 PubMed

Mycorrhiza. 2010 Feb;20(2):117-26 PubMed

PLoS One. 2009;4(2):e4502 PubMed

Plant Physiol. 2002 Nov;130(3):1213-20 PubMed

Ann Bot. 2013 Jul;112(2):317-30 PubMed

Plant Physiol. 2003 Mar;131(3):1496-507 PubMed

Plant Physiol. 2007 Dec;145(4):1460-70 PubMed

Plant Signal Behav. 2006 Jan;1(1):28-33 PubMed

J Plant Physiol. 2013 Mar 15;170(5):523-8 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...