Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26511108
PubMed Central
PMC4625851
DOI
10.1186/s12864-015-2077-0
PII: 10.1186/s12864-015-2077-0
Knihovny.cz E-zdroje
- MeSH
- květy genetika fyziologie MeSH
- mikro RNA genetika MeSH
- neplodnost rostlin genetika fyziologie MeSH
- Solanum lycopersicum genetika fyziologie MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
BACKGROUND: The 7B-1 tomato line (Solanum lycopersicum cv. Rutgers) is a photoperiod-sensitive male-sterile mutant, with potential application in hybrid seed production. Small RNAs (sRNAs) in tomato have been mainly characterized in fruit development and ripening, but none have been studied with respect to flower development and regulation of male-sterility. Using sRNA sequencing, we identified miRNAs that are potentially involved in anther development and regulation of male-sterility in 7B-1 mutant. RESULTS: Two sRNA libraries from 7B-1 and wild type (WT) anthers were sequenced and thirty two families of known miRNAs and 23 new miRNAs were identified in both libraries. MiR390, miR166, miR159 were up-regulated and miR530, miR167, miR164, miR396, miR168, miR393, miR8006 and two new miRNAs, miR#W and miR#M were down-regulated in 7B-1 anthers. Ta-siRNAs were not differentially expressed and likely not associated with 7B-1 male-sterility. miRNA targets with potential roles in anther development were validated using 5'-RACE. QPCR analysis showed differential expression of miRNA/target pairs of interest in anthers and stem of 7B-1, suggesting that they may regulate different biological processes in these tissues. Expression level of most miRNA/target pairs showed negative correlation, except for few. In situ hybridization showed predominant expression of miR159, GAMYBL1, PMEI and cystatin in tapetum, tetrads and microspores. CONCLUSION: Overall, we identified miRNAs with potential roles in anther development and regulation of male-sterility in 7B-1. A number of new miRNAs were also identified from tomato for the first time. Our data could be used as a benchmark for future studies of the molecular mechanisms of male-sterility in other crops.
School of Biological Sciences University of East Anglia Norwich NR4 7TJ UK
School of Computing Sciences University of East Anglia Norwich NR4 7TJ UK
Zobrazit více v PubMed
Sawhney VK. Genic male sterility. In: Shivanna KR Sawhney VK, editor. Pollen biotechnology for crop production and improvement. Cambridge: Cambridge University Press; 1997. pp. 183–98.
Sheoran IS, Rossb A, Olsonb D, Sawhney VK. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato. Solanum lycopersicum), A proteomic analysis. J Proteomics. 2009;71:624–36. doi: 10.1016/j.jprot.2008.10.006. PubMed DOI
Hlavinka J, Nausa J, Fellner M. Spontaneous mutation 7B-1 in tomato impairs blue light-induced stomatal opening. Plant Sci. 2013;209:75–80. doi: 10.1016/j.plantsci.2013.04.010. PubMed DOI
Fellner M, Zhang R, Pharis RP, Sawhney VK. Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to and high endogenous levels of abscisic acid. J Exp Bot. 2001;52:725–38. PubMed
Fellner M, Sawhney VK. The 7B-1 mutant in tomato shows blue-light-specific resistance to osmotic stress and abscisic acid. Planta. 2002;214:675–82. doi: 10.1007/s004250100671. PubMed DOI
Bergougnoux V, Zalabak D, Jandova M, Novak O, Wiese-Klinkenberg A, Fellner M. Effect of blue light on endogenous isopentenyladenine and endoreduplication during photomorphogenesis and de-etiolation of tomato. Solanum lycopersicum L. seedlings. PLoS One. 2012;7 doi: 10.1371/journal.pone.0045255. PubMed DOI PMC
Sawhney VK. Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J Hortic Sci Biotechnol. 2004;79:138–41.
Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe D. An RNA-dependent RNA polymerase is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell. 2000;101:543–53. doi: 10.1016/S0092-8674(00)80864-8. PubMed DOI
Vazquez F, Gasciolli V, Crete P, Vaucheret H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development but not posttranscriptional transgene silencing. Curr Biol. 2004;14:346–51. doi: 10.1016/j.cub.2004.01.035. PubMed DOI
Lu C, Kulkarni K, Souret FF, et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res. 2006;16:1276–88. doi: 10.1101/gr.5530106. PubMed DOI PMC
Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005;123:1279–91. doi: 10.1016/j.cell.2005.11.035. PubMed DOI PMC
Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297:1833–7. doi: 10.1126/science.1074973. PubMed DOI
Fei Q, Xia R, Meyers BC. Phased secondary small interfering RNAs in posttranscriptional regulatory networks. Plant Cell. 2013;25:2400–15. doi: 10.1105/tpc.113.114652. PubMed DOI PMC
Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121:207–21. doi: 10.1016/j.cell.2005.04.004. PubMed DOI
Yoshikawa M, Peragine A, Park MY, Poethig RS. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Gene Dev. 2005;19:2164–75. doi: 10.1101/gad.1352605. PubMed DOI PMC
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Gene Dev. 2006;20:3407–25. doi: 10.1101/gad.1476406. PubMed DOI PMC
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 2012;13:R47. doi: 10.1186/gb-2012-13-6-r47. PubMed DOI PMC
Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol. 2007;10:453–60. doi: 10.1016/j.pbi.2007.08.014. PubMed DOI
Li F, Orban R, Baker B. SoMART a web server for plant miRNA tasiRNA and target gene analysis. Plant J. 2012;70:891–901. doi: 10.1111/j.1365-313X.2012.04922.x. PubMed DOI
Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;2012(64):137–59. doi: 10.1146/annurev-arplant-050312-120043. PubMed DOI
Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets including a stress-induced miRNA. Mol Cell. 2004;14:787–99. doi: 10.1016/j.molcel.2004.05.027. PubMed DOI
Ori N, Cohen AR, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007;39:787–91. doi: 10.1038/ng2036. PubMed DOI
Sun G. MicroRNAs and their diverse functions in plants. Plant Mol Biol. 2011;18:17–36. PubMed
Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008;18:1602–9. doi: 10.1101/gr.080127.108. PubMed DOI PMC
Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. 2011;67:232–46. doi: 10.1111/j.1365-313X.2011.04586.x. PubMed DOI
Zuo J, Zhu B, Fu D, Zhu Y, Ma Y, Chi L, Ju Z, Wang Y, Zhai B, Luo Y. Sculpting the maturation softening and ethylene pathway, the influences of microRNAs on tomato fruits. BMC Genomics. 2012;13:7. doi: 10.1186/1471-2164-13-7. PubMed DOI PMC
Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot. 2013;64:1863–78. doi: 10.1093/jxb/ert049. PubMed DOI PMC
Wei M, Wei H, Wu M, Song M, Zhang J, Yu J, Fan S, Yu S. Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol. 2013;13:66. doi: 10.1186/1471-2229-13-66. PubMed DOI PMC
Zhang Y, Yin Z, Feng X, Shen F. Differential expression of microRNAs between 21A genetic male sterile line and its maintainer line in cotton. Gossypium hirsutum L. J Plant Studies 2014a, DOI, 105539/jpsv3n1p13.
Jiang J, Jiang J, Yang Y, Cao J. Identification of microRNAs potentially involved in male sterility of Brassica campestris ssp chinensis using microRNA array and quantitative RT-PCR assays. Cell Mol Biol Lett. 2013;18:416–32. doi: 10.2478/s11658-013-0097-9. PubMed DOI PMC
Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression and regulates both female and male reproduction. Development. 2006;133:4211–8. doi: 10.1242/dev.02602. PubMed DOI
Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell. 2007;13:115–25. doi: 10.1016/j.devcel.2007.04.012. PubMed DOI
Glazinska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J. The putative miR172 target gene APETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol. 2009;166:1801–13. doi: 10.1016/j.jplph.2009.05.011. PubMed DOI
Murray F, Kalla R, Jacobsen JV, Gubler F. A role for HvGAMYB in anther development. Plant J. 2003;33:481–91. doi: 10.1046/j.1365-313X.2003.01641.x. PubMed DOI
Kaneko M, Inukai Y, Ueguchi-Tanaka M, et al. Loss-of function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell. 2004;16:33–44. doi: 10.1105/tpc.017327. PubMed DOI PMC
Achard P, Herr A, Baulcombe DC, Harberd NP. Modulation of floral development by a gibberellin-regulated microRNA. Development. 2004;131:3357–65. doi: 10.1242/dev.01206. PubMed DOI
Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res. 2006;16:457–65. doi: 10.1038/sj.cr.7310057. PubMed DOI
Zhu D, Deng XW. A non-coding RNA locus mediates environment-conditioned male sterility in rice. Cell Res. 2012;22:791–2. doi: 10.1038/cr.2012.43. PubMed DOI PMC
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics. 2008;9:593. doi: 10.1186/1471-2164-9-593. PubMed DOI PMC
Jagadeeswaran G, Nimmakayala P, Zheng Y, Gowdu K, Reddy UK, Sunkar R. Characterization of the small RNA component of leaves and fruits from four different cucurbit species. BMC Genomics. 2012;13:329. doi: 10.1186/1471-2164-13-329. PubMed DOI PMC
Cao X, Wu Z, Jiang F, Zhou R, Yang Z. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics. 2014;15:1130. doi: 10.1186/1471-2164-15-1130. PubMed DOI PMC
Aryal R, Jagadeeswaran G, Zheng Y, Yu Q, Sunkar R, Ming R. Sex specific expression and distribution of small RNAs in papaya. BMC Genomics. 2014;15:20. doi: 10.1186/1471-2164-15-20. PubMed DOI PMC
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;62:960–76. PubMed
Yang J, Liu X, Xu B, Zhao N, Yang X, Zhang M. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics. 2013;14:9. doi: 10.1186/1471-2164-14-9. PubMed DOI PMC
Schwach F, Moxon S, Moulton V, Dalmay T. Deciphering the diversity of small RNAs in plants, the long and short of it. Brief Funct Genomics. 2009;8:472–81. doi: 10.1093/bfgp/elp024. PubMed DOI
Moxon S, Schwach F, Dalmay T, Maclean D, Studholme DJ, Moulton V. A toolkit for analyzing large-scale plant small RNA datasets. Bioinformatics. 2008;24:2252–3. doi: 10.1093/bioinformatics/btn428. PubMed DOI
Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, The MV, UEA sRNA workbench, a suite of tools for analyzing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics. 2012;28:2059–61. doi: 10.1093/bioinformatics/bts311. PubMed DOI PMC
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8. doi: 10.1038/nmeth.1226. PubMed DOI
Kasschau KD, Xie Z, Allen E, Liave C, Chapman EJ, Krizan KA, Carrington JC. P1/HC-Pro a viral suppressor of RNA silencing interferes with Arabidopsis development and miRNA function. Dev Cell. 2003;4:205–17. doi: 10.1016/S1534-5807(03)00025-X. PubMed DOI
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53. doi: 10.1146/annurev.arplant.57.032905.105218. PubMed DOI
Yang F, Liang G, Liu D, Yu D. Arabidopsis miR396 mediates the development of leaves and flowers in transgenic tobacco. Plant Biol. 2009;52:475–81. doi: 10.1007/s12374-009-9061-7. DOI
Fu C, Sunkar R, Zhou C, et al. Overexpression of miR156 in switchgrass. Panicum virgatum L. results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J. 2012;10:443–52. doi: 10.1111/j.1467-7652.2011.00677.x. PubMed DOI PMC
Sablowski RWM, Meyerowitz EM. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 1998;92:93–103. doi: 10.1016/S0092-8674(00)80902-2. PubMed DOI
Peskan-Berghofer T, Neuwirth J, Kusnetsov V, Oelmuller R. Suppression of heterotrimeric G-protein b-subunit affects anther shape pollen development and inflorescence architecture in tobacco. Planta. 2005;220:737–46. doi: 10.1007/s00425-004-1393-4. PubMed DOI
Millar AA, Gubler F. The Arabidopsis GAMYB-like genes MYB33 and MYB65 are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell. 2005;17:705–21. doi: 10.1105/tpc.104.027920. PubMed DOI PMC
Murmu J, Bush MJ, DeLong C, et al. Arabidopsis bZIP transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiology 2010, doi:101104/pp110159111. PubMed PMC
Shao SQ, Li BY, Zhang ZT, Zhou Y, Jiang J, Li XB. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. J Genet Genomics. 2010;37:805–16. doi: 10.1016/S1673-8527(09)60098-9. PubMed DOI
Xing S, Salinas M, Hohmann S, Berndtgen R, Huijsera P. MiR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell. 2010;22:3935–50. doi: 10.1105/tpc.110.079343. PubMed DOI PMC
Xing L, Li Z, Khalil R, Ren Z, Yang Y. Functional identification of a novel F-box/FBA gene in tomato. Physiol Plant. 2012;144:161–8. doi: 10.1111/j.1399-3054.2011.01543.x. PubMed DOI
Zhu L, Shi J, Zhao G, Zhang D, Liang W. Post-meiotic deficient anther1. PDA1 encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol. 2013;56:59–68. doi: 10.1007/s12374-013-0902-z. DOI
Yang SL, Jiang L, Puah CS, Xie L, Zhang XQ, Chen LQ, Yang W, Ye D. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS1. Plant Physiol. 2005;139:186–91. doi: 10.1104/pp.105.063529. PubMed DOI PMC
Li N, Zhang DS, Liu HS, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell. 2006;18:2999–3014. doi: 10.1105/tpc.106.044107. PubMed DOI PMC
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang A, Wilson Z. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell. 2010;22:91–107. doi: 10.1105/tpc.109.071803. PubMed DOI PMC
Morohashi K, Minami M, Takase H, Hotta Y, Hiratsuka K. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression. J Biol Chem. 2003;278:20865–73. doi: 10.1074/jbc.M301712200. PubMed DOI
Zhou S, Wang Y, Li W, et al. Pollen semi-sterility1 encodes a kinesin-1–like protein important for male meiosis anther dehiscence and fertility in rice. Plant Cell. 2011;23:111–29. doi: 10.1105/tpc.109.073692. PubMed DOI PMC
Cheng Y, Wang Q, Li Z, et al. Cytological and comparative proteomic analyses on male sterility in Brassica napus L induced by the chemical hybridization agent monosulphuron ester sodium. PLoS One. 2013;8 doi: 10.1371/journal.pone.0080191. PubMed DOI PMC
Phan TD, Bo W, West G, Lycett GW, Tucker GA. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol. 2007;144:1960–7. doi: 10.1104/pp.107.096347. PubMed DOI PMC
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005;8:517–27. doi: 10.1016/j.devcel.2005.01.018. PubMed DOI
Tsuji H, Aya K, Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J. 2006;47:427–44. doi: 10.1111/j.1365-313X.2006.02795.x. PubMed DOI
Gong X, Bewley DJ. A GAMYB-like gene in tomato and its expression during seed germination. Planta. 2008;228:563–72. doi: 10.1007/s00425-008-0759-4. PubMed DOI
Reid JB, Ross JJ, Swain SM. Internode length in Pisum, A new slender mutant with elevated levels of C19 gibberellins. Planta. 1992;188:462–7. doi: 10.1007/BF00197036. PubMed DOI
Jacobsen JV, Olszewski NE. Mutation at the SPINDLY locus of Arabidopsis alters gibberellin signal transduction. Plant Cell. 1993;5:887–96. doi: 10.1105/tpc.5.8.887. PubMed DOI PMC
Ross JJ, Murfet IC, Reid JB. Gibberellin mutants. Physiol Plant. 1997;100:550–60. doi: 10.1111/j.1399-3054.1997.tb03060.x. DOI
Hong SH, Kim SJ, Ryu JS, Choi H, Jeong S, Shin J, Choi G, Nam HG. CRY1 inhibits COP1-mediated degradation of BIT1 a MYB transcription factor to activate blue light-dependent gene expression in Arabidopsis. Plant J. 2008;55:361–71. doi: 10.1111/j.1365-313X.2008.03508.x. PubMed DOI
Kwon Y, Kim JH, Nguyen HN, Jikumaru Y, Kamiya Y, Hong SW, Lee H. A novel Arabidopsis MYB-like transcription factor MYBH regulates hypocotyl elongation by enhancing auxin accumulation. J Exp Bot. 2013;64:3911–22. doi: 10.1093/jxb/ert223. PubMed DOI PMC
Liu N, Wu S, Houten JV, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, van der Knaap E. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot. 2014;65:2507–20. doi: 10.1093/jxb/eru141. PubMed DOI PMC
Nagpal P, Ellis CM, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. 2005;132:4107–18. doi: 10.1242/dev.01955. PubMed DOI
Tian C, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT. Disruption and overexpression of Auxin Response Factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit indicating its possible involvement in auxin homeostasis in light condition. Plant J. 2004;40:333–43. doi: 10.1111/j.1365-313X.2004.02220.x. PubMed DOI
Rhee SY, Somerville CR. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J. 1998;15:79–88. doi: 10.1046/j.1365-313X.1998.00183.x. PubMed DOI
Lou P, Kang J, Zhang G, Bonnema G, Fang Z, Wang X. Transcript profiling of a dominant male sterile mutant. Ms-cd1, in cabbage during flower bud development. Plant Sci. 2007;172:111–9. doi: 10.1016/j.plantsci.2006.07.015. DOI
Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park D, Ma H, Hu Y. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K Oligomeric Chip. PLoS One. 2013;8 doi: 10.1371/journal.pone.0072178. PubMed DOI PMC
Rhee SY, Osborne E, Poindexter PD, Somerville CR. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol. 2003;133:1170–80. doi: 10.1104/pp.103.028266. PubMed DOI PMC
Derbyshire P, McCann MC, Roberts K. Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol. 2007;7:31. doi: 10.1186/1471-2229-7-31. PubMed DOI PMC
Al-Qsous S, Carpentie E, Klein-Eude D, Burel C, Mareck A, Dauchel H, Gomord V, Balangé AP. Identification and isolation of a pectin methylesterase isoform that could be involved in flax cell wall stiffening. Planta. 2004;219:369–78. doi: 10.1007/s00425-004-1246-1. PubMed DOI
Xiao C, Somerville C, Anderson CT. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. Plant Cell. 2014;26:1018–35. doi: 10.1105/tpc.114.123968. PubMed DOI PMC
Zhang XM, Wang Y, Lv XM, Li H, Sun P, Lu H, Li FL. NtCP56 a new cysteine protease in Nicotiana tabacum L, involved in pollen grain development. J Exp Bot. 2009;60:1569–77. doi: 10.1093/jxb/erp022. PubMed DOI PMC
Zheng R, Yue S, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D. Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.) PLoS One. 2012;7 doi: 10.1371/journal.pone.0041861. PubMed DOI PMC
Zhang D, Liu D, Lv X, Wang Y, Xun Z, Liu Z, Li F, Lu H. The cysteine protease CEP1 a key executor involved in tapetal programmed cell death regulates pollen development in Arabidopsis. Plant Cell. 2014;26:72939–61. PubMed PMC
Minic Z, Jamet E, San-Clement H, et al. Transcriptomic analysis of Arabidopsis developing stems, a close-up on cell wall genes. BMC Plant Biol. 2009;9:6. doi: 10.1186/1471-2229-9-6. PubMed DOI PMC
Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J. PatMaN, rapid alignment of short sequences to large databases. Bioinformatics. 2008;24:1530–1. doi: 10.1093/bioinformatics/btn223. PubMed DOI PMC
Kozomara A, Griffiths-Jones S. miRBase, integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:152–7. doi: 10.1093/nar/gkq1027. PubMed DOI PMC
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics. 2004;20:2911–7. doi: 10.1093/bioinformatics/bth374. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Methods. 2001;25:402–8. doi: 10.1006/meth.2001.1262. PubMed DOI
Javelle M, Timmermans MCP. In situ localization of small RNAs in plants by using LNA probes. Nat Protoc. 2012;7:533–41. doi: 10.1038/nprot.2012.006. PubMed DOI