Transcriptional regulation of male-sterility in 7B-1 male-sterile tomato mutant
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
BB/G008078/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
28178307
PubMed Central
PMC5298235
DOI
10.1371/journal.pone.0170715
PII: PONE-D-16-40768
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce * MeSH
- genová ontologie MeSH
- glukany metabolismus MeSH
- mutace * MeSH
- neplodnost rostlin genetika MeSH
- regulace genové exprese u rostlin * MeSH
- Solanum lycopersicum genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- callose MeSH Prohlížeč
- glukany MeSH
The 7B-1 tomato (Solanum lycopersicum L. cv Rutgers) is a male-sterile mutant with enhanced tolerance to abiotic stress, which makes it a potential candidate for hybrid seed breeding and stress engineering. To underline the molecular mechanism regulating the male-sterility in 7B-1, transcriptomic profiles of the 7B-1 male-sterile and wild type (WT) anthers were studied using mRNA sequencing (RNA-Seq). In total, 768 differentially expressed genes (DEGs) were identified, including 132 up-regulated and 636 down-regulated transcripts. Gene ontology (GO) enrichment analysis of DEGs suggested a general impact of the 7B-1 mutation on metabolic processes, such as proteolysis and carbohydrate catabolic process. Sixteen candidates with key roles in regulation of anther development were subjected to further analysis using qRT-PCR and in situ hybridization. Cytological studies showed several defects associated with anther development in the 7B-1 mutant, including unsynchronized anther maturation, dysfunctional meiosis, arrested microspores, defect in callose degradation and abnormal tapetum development. TUNEL assay showed a defect in programmed cell death (PCD) of tapetal cells in 7B-1 anthers. The present study provides insights into the transcriptome of the 7B-1 mutant. We identified several genes with altered expression level in 7B-1 (including beta-1,3 glucanase, GA2oxs, cystatin, cysteine protease, pectinesterase, TA29, and actin) that could potentially regulate anther developmental processes, such as meiosis, tapetum development, and cell-wall formation/degradation.
Boyce Thompson Institute Cornell University Ithaca NY United States of America
Department of Agricultural and Forestry Sciences University of Tuscia Viterbo Italy
School of Biological Sciences University of East Anglia Norwich United Kingdom
School of Computing Sciences University of East Anglia Norwich United Kingdom
Zobrazit více v PubMed
Gorguet B, Schipper D, van Lammeren A, Visser RG, van Heusden AW. ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor Appl Genet. 2009;118:1199–1209 10.1007/s00122-009-0974-9 PubMed DOI
Emmanuel E, Levy AA. Tomato mutants as tools for functional genomics. Curr Opin Plant Biol. 2002;5:112–117 PubMed
Lu Q, Li XH, Guo D, Xu CG, Zhang Q. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 284-kb DNA fragment. Mol Genet Genomics. 2005;273:507–511 10.1007/s00438-005-1155-4 PubMed DOI
Gorman SW, McCormick S. Male sterility in tomato. Crit Rev Plant Sci. 1997;16:31–53
Sawhney VK, Bhadula SK. Microsporogenesis in the normal and male-sterile stamenless-2 mutant of tomato. Can J Bot. 1988;66:2013–2021
Rick CM. Genetics and development of nine male-sterile tomato mutants. Hilgardia. 1948;18:599–633
Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, Hwan J, et al. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. J Exp Bot. 2014; PubMed PMC
Canales C, Bhatt AM, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol. 2002;12:1718–1727 PubMed
Zhao DZ, Wang GF, Speal B, Ma H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 2002;16:2021–2031 10.1101/gad.997902 PubMed DOI PMC
Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K. Arabidopsis MALE STERILITY1 encodes a PHD-Type transcription factor and regulates pollen and tapetum development. Plant Cell. 2007;19:3549–3562 10.1105/tpc.107.054536 PubMed DOI PMC
Yang C, Vizcay-Barrena G, Conner K, Wilson ZA. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell. 2007;19:3530–3548 10.1105/tpc.107.054981 PubMed DOI PMC
Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, et al. The Arabidopsis male sterility 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 1997;12:615–623 PubMed
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell. 2009;21:1453–1472 10.1105/tpc.108.062935 PubMed DOI PMC
Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell. 2005;17:705–721 10.1105/tpc.104.027920 PubMed DOI PMC
Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development. 2006;133: 3085–3095 10.1242/dev.02463 PubMed DOI
Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, et al. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 2008;55:266–277 10.1111/j.1365-313X.2008.03500.x PubMed DOI
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, et al. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell. 2010;22:91–107 10.1105/tpc.109.071803 PubMed DOI PMC
Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, et al. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol. 2014; PubMed
Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 2001;28:27–39 PubMed
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong, et al. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol. 2011;156(2):615–630 10.1104/pp.111.175760 PubMed DOI PMC
Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, et al. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 2014;26:1512–1524 10.1105/tpc.114.123745 PubMed DOI PMC
Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, et al. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell. 2005;17:2705–2722 10.1105/tpc.105.034090 PubMed DOI PMC
Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, et al. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant. 2008;1:599–610 10.1093/mp/ssn028 PubMed DOI
Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun. 2013;4:1445 10.1038/ncomms2396 PubMed DOI
Singh S, Sawhney VK. Cytokinins in a normal and the ogura (ogu) cytoplasmic male-sterile line of rapeseed (Brassica napus). Plant Sci. 1992;86:147–154
Singh S, Sawhney VK, Pearce DW. Temperature effects on endogenous indole-3-acetic acid levels in leaves and stamens of the normal and male sterile ‘stamenless 2’ mutant of tomato. Plant Cell Environ. 1992;15:373–377
Shukla A, Sawhney VK. Abscisic acid: one of the factors affecting male sterility in Brassica napus. Physiol Plantarum. 1994;91:522–528
Smith MB, Horner HT, Palmer RG. Temperature and photoperiod effects on sterility in a cytoplasmicmale-sterile soybean. Crop Sci. 2001;41:702–704
Guo RX, Sun DF, Tan ZB, Rong DF, Li CD. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat. Theor Appl Genet. 2006;112:1271–1276 10.1007/s00122-006-0228-z PubMed DOI
Goldberg RB, Beals TP, Sanders PM. Anther development: basic principles and practical applications. Plant Cell. 1993;5:1217–1229 10.1105/tpc.5.10.1217 PubMed DOI PMC
Piffanelli P, Ross JHE, Murphy DJ. Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod. 1998;11:65–80
Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell. 2006;18: 2999–3014 10.1105/tpc.106.044107 PubMed DOI PMC
Sawhney VK. Genic male sterility In, Shivanna KR Sawhney VK editors Pollen biotechnology for crop production and improvement. Cambridge, Cambridge University Press; pp. 1997;183–198
Sawhney VK. Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J Hortic Sci Biotech. 2004;79:138–141
Fellner M, Zhang R, Pharis RP, Sawhney VK. Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to and high endogenous levels of abscisic acid. J Exp Bot. 2001;52:725–738 PubMed
Fellner M, Sawhney VK. The 7B-1 mutant in tomato shows blue-light-specific resistance to osmotic stress and abscisic acid. Planta. 2002;214:675–682 10.1007/s004250100671 PubMed DOI
Bergougnoux V, Zalabak D, Jandova M, Novak O, Wiese-Klinkenberg A, Fellner M. Effect of blue light on endogenous isopentenyladenine and endoreduplication during photomorphogenesis and de-etiolation of tomato Solanum lycopersicum L seedlings. PLoS One. 2012;7:e45255 10.1371/journal.pone.0045255 PubMed DOI PMC
Sheoran IS, Rossb A, Olsonb D, Sawhney VK. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato Solanum lycopersicum), A proteomic analysis. J Proteomics. 2009;71:624–636 10.1016/j.jprot.2008.10.006 PubMed DOI
Omidvar V, Fellner M. DNA methylation and transcriptomic changes in response to different lights and stresses in 7B-1 male-sterile tomato. PLoS ONE. 2015;10: e0121864 10.1371/journal.pone.0121864 PubMed DOI PMC
Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics. 2015. a;16:878 10.1186/s12864-015-2077-0 PubMed DOI PMC
Omidvar V, Mohorianu I, Dalmay T, Fellner M. MicroRNA regulation of abiotic stress response in 7B-1 male-sterile tomato mutant. Plant Genome. 2015b; PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120 10.1093/bioinformatics/btu170 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41: D590–6 10.1093/nar/gks1219 PubMed DOI PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10: R25 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14: R36 10.1186/gb-2013-14-4-r36 PubMed DOI PMC
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25 10.1186/gb-2010-11-3-r25 PubMed DOI PMC
Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21: 2213–2223 10.1101/gr.124321.111 PubMed DOI PMC
Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, et al. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. 2011;67:232–246 10.1111/j.1365-313X.2011.04586.x PubMed DOI
Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protocol. 2013;8:1551–1566 PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods. 2001;25:402–408 10.1006/meth.2001.1262 PubMed DOI
Scott RJ, Spielman M, Dickinson HG. Stamen structure and function. Plant Cell. 2004;16(Suppl): S46–S60 PubMed PMC
Lu P, Maofeng C, Jiange Y, Gang N, Guoliang W, Hong M. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. Plant Physiol. 2014;164:1893–1904 10.1104/pp.113.233387 PubMed DOI PMC
Zhu Y, Xiaoling D, Zhengfu Z, Shengqian X, Bin Y, Wen J, et al. Separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus: the role of abscisic acid in early anther development. Plant Mol Biol. 2010;72:111–123 10.1007/s11103-009-9556-0 PubMed DOI
Nakamura A, Maeda H, Mizuno M, Koshi Y, Nagamatsu Y. beta-Galactosidase and its significance in ripening of "Saijyo" Japanese Persimmon fruit. Biosci Biotechnol Biochem. 2003;67:68–76 10.1271/bbb.67.68 PubMed DOI
Lazan H, Ng SY, Goh LY, Ali ZM. Papaya beta-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiol Biochem. 2004;42(11):847–53 10.1016/j.plaphy.2004.10.007 PubMed DOI
Rhee SY, Somerville CR. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J. 1998; 15:79–88 PubMed
Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, et al. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants?. Plant J. 2003;35:104–115 PubMed
Jacobsen SE, Olszewski NE. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol. 1991;97:409–414 PubMed PMC
Plackett ARG, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, et al. Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell. 2012;24:941–960 10.1105/tpc.111.095109 PubMed DOI PMC
Rastogi R, Sawhney VK. Flower Culture of a Male Sterile Stamenless-2 Mutant of Tomato (Lycopersicon esculentum). Amer J Bot. 1988; 75:513–518.
Ross JJ, Reid JB, Swain SM, Hasan O, Poole AT, Hedden P, et al. Genetic regulation of gibberellin deactivation in Pisum. Plant J. 1995;7: 513–523
Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell. 1990;2:1201–1224 10.1105/tpc.2.12.1201 PubMed DOI PMC
Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB. lnduction of male sterility in plants by a chimaeric ribonuclease gene. Nature. 1990;347:737–741
Rong Z, Yu-le L, Feng Z, Sheng-guo L, Liang-yi K, Peng L. Induction of male sterility in oilseed rape by TA29-barnase gene. Acta Botanica Sinica. 1996;38:582–585
Nawaz-ul-Rehman MS, Mansoor S, Khan AA, Zafar Y, Briddon RW. RNAi-mediated male sterility of tobacco by silencing TA29. Mol Biotechnol. 2007;36(2):159–165 PubMed
Zhang J, Zhang C, Cheng Y, Qi L, Wang S, Hou X. Microtubule and male sterility in a gene-cytoplasmic male sterile line of non-heading Chinese cabbage. J Sci Food Agric. 2012;92:3046–3054 10.1002/jsfa.5722 PubMed DOI
Xu C, Liu Z, Zhang L, Zhao C, Yuan S, Zhang F. Organization of actin cytoskeleton during meiosis I in a wheat thermo-sensitive genic male sterile line Protoplasma. 2013;250:415–422 10.1007/s00709-012-0386-6 PubMed DOI
Yui R, Iketani S, Mikami T, Kubo T. Antisense inhibition of mitochondrial pyruvate dehydrogenase subunit in anther tapetum causes male sterility. Plant J. 2003;34:57–66 PubMed
Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, et al. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J. 2005;42: 641–651 10.1111/j.1365-313X.2005.02406.x PubMed DOI
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell. 2006;18:3252–3274 10.1105/tpc.106.042689 PubMed DOI PMC
Mamun AN. Reversible male sterility in transgenic tobacco carrying a dominant-negative mutated glutamine synthetase gene under the control of microspore-specific promoter. Indian J Exp Biol. 2007;45:1022–1030 PubMed
Kim OK, Jung JH, Park CM. An Arabidopsis F-box protein regulates tapetum degeneration and pollen maturation during anther development. Planta. 2010;232:353–366 10.1007/s00425-010-1178-x PubMed DOI
Li L, Li Y, Song S, Deng H, Li N, Fu X, et al. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta. 2015;241:157–166 10.1007/s00425-014-2160-9 PubMed DOI
Schreiber DN, Bantin J, Dresselhaus T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol. 2004;134:1069–1079 10.1104/pp.103.030577 PubMed DOI PMC
Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, et al. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biol. 2014;14:89 10.1186/1471-2229-14-89 PubMed DOI PMC
Vizcay-Barrena G, Wilson ZA. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot. 2006;57:2709–2717 10.1093/jxb/erl032 PubMed DOI
Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, et al. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K Oligomeric Chip. PLoS ONE. 2013;8(9): e72178 10.1371/journal.pone.0072178 PubMed DOI PMC
Distelfeld A, Pearce SP, Avni R, Scherer B, Uauy C, Piston F, et al. Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol Biol. 2012;78:515–524 10.1007/s11103-012-9881-6 PubMed DOI PMC
Sun YJ, Hord CLH, Chen CB, Ma H. Regulation of Arabidopsis early anther development by putative cell-cell signaling molecules and transcriptional regulators J Integr Plant Biol. 2007;49:60–68
Liu Z, Bao E, Liang W, Yin J, Zhang D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol. 2010;52:670–678 10.1111/j.1744-7909.2010.00959.x PubMed DOI
Zhu J, Lou Y, Xu X, Yang ZN. A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol. 2011;53:892–900 10.1111/j.1744-7909.2011.01078.x PubMed DOI
Gu JN, Zhu J, Yu Y, Teng XD, Lou Y, Xu XF. DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J. 2014;80:1005–1013 10.1111/tpj.12694 PubMed DOI