MicroRNA Regulation of Abiotic Stress Response in 7B-1 Male-Sterile Tomato Mutant
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.07/2.3.00/30.0004
Operational Programs Education for Competitiveness-European Social Fund
- Publikační typ
- časopisecké články MeSH
The 7B-1 tomato (Solanum lycopersicum L. 'Rutgers') is a male-sterile mutant with enhanced tolerance to abiotic stress in a blue-light (BL) specific manner compared with its wild-type (WT). This makes the 7B-1 a potential candidate for hybrid seed breeding and stress engineering. To identify small RNAs (sRNAs) linked to stress tolerance of 7B-1, two sRNA libraries from BL-grown 7B-1 and WT seedlings treated simultaneously with abscisic acid (ABA) and mannitol were sequenced, and sRNA profiles were compared. Twenty nine families of known microRNAs (miRNAs) and 27 putative novel miRNAs were identified from the two libraries. MiR5300, miR5301, miR2916, and a novel miRNA denoted miR#C were upregulated, while miR159, miR166, miR472, miR482, and two novel miRNAs, miR#A and miR#D, were downregulated in stress-treated 7B-1 seedlings. MiRNA targets with potential roles in stress regulation were validated by rapid amplification of 5' complementary DNA ends (5'-RACE) analysis. Expression of miR159, miR166, miR472, miR482, miR#A, and miR#D together with their targets were further investigated in response to ABA, mannitol, NaCl, and cold treatments and a strong negative correlation was observed between the levels of these miRNAs and expression of their targets. Only miR159 and miR166 responded to cold treatment. MiR#A and its target were regulated by ABA and mannitol as early as 0.5 h after the treatments, while other miRNAs and targets were regulated only after 2 h. This suggests a role in early response to stress for miR#A. Our data suggests that miR159, miR166, miR472, miR482, miR#A, and miR#D are likely to facilitate the BL-specific enhanced tolerance of 7B-1 to abiotic stress.
School of Biological Sciences Univ of East Anglia Norwich NR4 7TJ UK
School of Computing Sciences Univ of East Anglia Norwich NR4 7TJ UK
Zobrazit více v PubMed
Afzal, A.J., Wood, A.J., Light, D.A.. 2008. Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol. Plant Microbe Interact. 21:507-517. doi: 10.1094/MPMI-21-5-0507http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000255048400001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Aryal, R., Jagadeeswaran, G., Zheng, Y., Yu, Q., Sunkar, R., Ming, R.. 2014. Sex specific expression and distribution of small RNAs in papaya. BMC Genomics 15:20. doi: 10.1186/1471-2164-15-20
Axtell, M.J. 2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137-159. doi: 10.1146/annurev-arplant-050312-120043http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000321699500007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Bartel, D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281-297. doi: 10.1016/S0092-8674(04)00045-5
Belamkar, V., Weeks, N.T., Bharti, A.K., Farmer, A.D., Graham, M.A., Cannon, S.B.. 2014. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 15:950. doi: 10.1186/1471-2164-15-950
Bergougnoux, V., Zalabak, D., Jandova, M., Novak, O., Wiese-Klinkenberg, A., Fellner, M.. 2012. Effect of blue light on endogenous isopentenyladenine and endoreduplication during photomorphogenesis and de-etiolation of tomato (Solanum lycopersicum L.) seedlings. PLoS ONE 7:e45255. doi: 10.1371/journal.pone.0045255
Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J.P. et al. 2008. MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J. 54:876-887. doi: 10.1111/j.1365-313X.2008.03448.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000256142200008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Cao, X., Wu, Z., Jiang, F., Zhou, R., Yang, Z.. 2014. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 15:1130.10.1186/1471-2164-15-1130
Chen, X., Chen, Z., Zhao, H., Zhao, Y., Cheng, B., Xiang, Y.. 2014. Genome-wide analysis of soybean HD-zip gene family and expression profiling under salinity and drought treatments. PLoS ONE 9:e87156. doi: 10.1371/journal.pone.0087156
Chini, A., Grant, J.J., Seki, M., Shinozaki, K., Loake, G.J.. 2004. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J. 38:810-822. doi: 10.1111/j.1365-313X.2004.02086.x
Colaneri, A.C., Tunc-Ozdemir, M., Huang, J.P., Jones, A.M.. 2014. Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol. 14:129. doi: 10.1186/1471-2229-14-129
Covarrubias, A.A., Reyes, J.L.. 2010. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ. 33:481-489. doi: 10.1111/j.1365-3040.2009.02048.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000275146200003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Dai, M., Hu, Y., Ma, Q., Zhao, Y., Zhou, D.X.. 2008. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol. Biol. 66:289-301. doi: 10.1007/s11103-007-9270-8http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000251829000007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Dalmay, T., Hamilton, A., Rudd, S., Angell, S., Baulcombe, D.. 2000. An RNA-dependent RNA polymerase is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543-553. doi: 10.1016/S0092-8674(00)80864-8
Din, M., Barozai, M.Y.. 2014. Profiling microRNAs and their targets in an important fleshy fruit: Tomato (Solanum lycopersicum). Gene 535:198-203. doi: 10.1016/j.gene.2013.11.034http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000331672200017&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., Zheng, Y.. 2009. Differential expression of miRNAs in response to salt stress in maize roots. Ann. Bot. (Lond.) 103:29-38. doi: 10.1093/aob/mcn205http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000261678300005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Emmanuel, E., Levy, A.A.. 2002. Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol. 5:112-117. doi: 10.1016/S1369-5266(02)00237-6
Fellner, M., Sawhney, V.K.. 2002. The 7B-1 mutant in tomato shows blue-light-specific resistance to osmotic stress and abscisic acid. Planta 214:675-682. doi: 10.1007/s004250100671
Fellner, M., Zhang, R., Pharis, R.P., Sawhney, V.K.. 2001. Reduced de-etiolation of hypocotyl growth in a tomato mutant is associated with hypersensitivity to, and high endogenous levels of abscisic acid. J. Exp. Bot. 52:725-738.
Gao, Z., Shi, T., Luo, X., Zhang, Z., Zhuang, W., Wang, L.. 2012. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics 13:371. doi: 10.1186/1471-2164-13-371
Gong, X., Bewley, D.J.. 2008. A GAMYB-like gene in tomato and its expression during seed germination. Planta 228:563-572. doi: 10.1007/s00425-008-0759-4http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000259008800005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Huang, D., Koh, C., Feurtado, J.A., Tsang, E., Cutler, A.J.. 2013. MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140. doi: 10.1186/1471-2164-14-140
Jeong, H.J., Kang, J.H., Zhao, M., Kwon, J.K., Choi, H.S., Bae, J. et al. 2014. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. J. Exp. Bot. 65:6693-6709. doi: 10.1093/jxb/eru389http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000348154300029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Jian, X., Zhang, L., Li, G., Zhang, L., Wang, X., Cao, X. et al. 2010. Identification of novel stress regulated microRNAs from Oryza sativa L. Genomics 95:47-55. doi: 10.1016/j.ygeno.2009.08.017http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000273838300007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Jiang, Y., Chen, R., Dong, J., Xu, Z., Gao, X.. 2012. Analysis of GDSL lipase (GLIP) family genes in rice (Oryza sativa). Plant Omics 5:351-358.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000310985700006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Jin, W., Wu, F., Xiao, L., Liang, G., Zhen, Y., Guo, Z. et al. 2012. Microarray-based analysis of tomato miRNA regulated by Botrytis cinerea. Plant Growth Regul. 31:38-48. doi: 10.1007/s00344-011-9217-9http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000300674500004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Jung, H.J., Kang, H.. 2007. Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol. Biochem. 45:805-811. doi: 10.1016/j.plaphy.2007.07.015http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000250637400009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Kaneko, M., Inukai, Y., Ueguchi-Tanaka, M., Itoh, H., Izawa, T., Kobayashi, Y. et al. 2004. Loss-of function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16:33-44. doi: 10.1105/tpc.017327
Kantar, M., Lucas, S.J., Budak, H.. 2010. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471-484. doi: 10.1007/s00425-010-1309-4http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000287666300003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Karlova, R., van Haarst, J.C., Maliepaard, C., van de Geest, H., Bovy, A.G., Lammers, M. et al. 2013. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J. Exp. Bot. 64:1863-1878. doi: 10.1093/jxb/ert049http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000318651400008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Kim, S., Yang, J.Y., Xu, J., Jang, I.C., Prigge, M.J., Chua, N.H.. 2008. Two cap-binding proteins CBP20 and CBP80 are involved in processing primary microRNAs. Plant Cell Physiol. 49:1634-1644. doi: 10.1093/pcp/pcn146http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000260978700002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Kong, D., Li, M., Dong, Z., Ji, H., Li, X.. 2015. Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses. Plant Cell Rep. 34:395-410. doi: 10.1007/s00299-014-1717-1http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000349958200004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Kong, Y.M., Elling, A.A., Chen, B., Deng, X.W.. 2010. Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am. J. Plant Sci. 1:69-76. doi: 10.4236/ajps.2010.12009
Kozomara, A., Griffiths-Jones, S.. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:152-157. doi: 10.1093/nar/gkq1027
Kruszka, K., Pacak, A., Swida-Barteczka, A., Nuc, P., Alaba, S., Wroblewska, Z. et al. 2014. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J. Exp. Bot. 6:6123-6135. doi: 10.1093/jxb/eru353
Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., Liu, X. et al. 2011. Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol. 11:170. doi: 10.1186/1471-2229-11-170
Liu, D., Song, Y., Chen, Z., Yu, D.. 2009. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol. Plant. 136:223-236. doi: 10.1111/j.1399-3054.2009.01229.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000266112900008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Liu, H.H., Tian, X., Li, Y.J., Wu, C.A., Zheng, C.C.. 2008. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836-843. doi: 10.1261/rna.895308http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000255184500006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., Carrington, J.C.. 2007. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 52:133-146. doi: 10.1111/j.1365-313X.2007.03218.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000249828700012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Livak, K.J., Schmittgen, T.D.. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) method. Methods 25:402-408. doi: 10.1006/meth.2001.1262
Lu, S., Sun, Y., Chiang, V.. 2008. Stress-responsive microRNAs in Populus. Plant J. 55:131-151. doi: 10.1111/j.1365-313X.2008.03497.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000257572300011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Luan, Y.W.W., Liu, P.. 2014. Identification and functional analysis of novel and conserved microRNAs in tomato. Mol. Biol. Rep. 41:5385-5394. doi: 10.1007/s11033-014-3410-4http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000339910900054&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
McHale, L., Tan, X., Koehl, P., Michelmore, R.W.. 2006. Plant NBS-LRR proteins: Adaptable guards. Genome Biol. 7:212. doi: 10.1186/gb-2006-7-4-212
Millar, A.A., Gubler, F.. 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705-721. doi: 10.1105/tpc.104.027920
Mohorianu, I., Schwach, F., Jing, R., Lopez-Gomollon, S., Moxon, S., Szittya, G., Sorefan, K. et al. 2011. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. 67:232-246. doi: 10.1111/j.1365-313X.2011.04586.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000292700900004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5:621-628. doi: 10.1038/nmeth.1226http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000257166700015&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Moxon, S., Jing, R., Szittya, G., Schwach, F., Rusholme-Pilcher, R.L., Moulton, V., Dalmay, T.. 2008a. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 18:1602-1609. doi: 10.1101/gr.080127.108http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000259700800007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Moxon, S., Schwach, F., Dalmay, T., Maclean, D., Studholme, D.J., Moulton, V.. 2008b. A toolkit for analyzing large-scale plant small RNA datasets. Bioinformatics 24:2252-2253. doi: 10.1093/bioinformatics/btn428http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000259581900019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Nguyen, V.N., Moon, S., Jung, K.H.. 2014. Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J. Plant Physiol. 171:1276-1288. doi: 10.1016/j.jplph.2014.05.006http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000345630400009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.. 2013. Sensing the environment: Key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64:445-458. doi: 10.1093/jxb/ers354http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000313618900006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., Weigel, D.. 2003. Control of leaf morphogenesis by microRNAs. Nature 425:257-263. doi: 10.1038/nature01958
Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T., Burgyan, J.. 2010. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 62:960-976.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000278624700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Phillips, J.R., Dalmay, T., Bartels, D.. 2007. The role of small RNAs in abiotic stress. FEBS Lett. 581:3592-3597. doi: 10.1016/j.febslet.2007.04.007http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000248787000003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Pilcher, R.L., Moxon, S., Pakseresht, N., Moulton, V., Manning, K., Seymour, G., Dalmay, T.. 2007. Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226:709-717. doi: 10.1007/s00425-007-0518-yhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000248008600014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Prasch, C.M., Sonnewald, U.. 2013. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 162:1849-1866. doi: 10.1104/pp.113.221044http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000322633400009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Prufer, K., Stenzel, U., Dannemann, M., Green, R.E., Lachmann, M., Kelso, J.. 2008. PatMaN: Rapid alignment of short sequences to large databases. Bioinformatics 24:1530-1531. doi: 10.1093/bioinformatics/btn223http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000257169700009&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Reyes, J.L., Chua, N.H.. 2007. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49:592-606. doi: 10.1111/j.1365-313X.2006.02980.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000244060500002&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Rogers, K., Chen, X.. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383-2399. doi: 10.1105/tpc.113.113159http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000323650900005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Roy, M., Akhtar, S., Atanassova, B., Balacheva, E., Biswas, P., Hazra, P.. 2012. Expressivity of two genes controlling functional male sterility in tomato: Positional sterile (ps) and positional sterile-2 (ps-2) during autumn-winter season. J. Crop Weed 8:1-6.
Sawhney, V.K. 1997. Genic male sterility. In: Shivanna, K.R., Sawhney, V.K., editors, Pollen biotechnology for crop production and improvement. Cambridge Univ. Press, Cambridge. p. 183-198.
Sawhney, V.K. 2004. Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J. Hortic. Sci. Biotechnol. 79:138-141.
Schwach, F., Moxon, S., Moulton, V., Dalmay, T.. 2009. Deciphering the diversity of small RNAs in plants: The long and short of it. Brief. Funct. Genomics Proteomics 8:472-481. doi: 10.1093/bfgp/elp024
Sheoran, I.S., Ross, A.R., Olson, D.J., Sawhney, V.K.. 2009. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): A proteomic analysis. J. Proteomics 71:624-636. doi: 10.1016/j.jprot.2008.10.006http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000263426500006&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Shivaprasad, P.V., Chen, H.M., Patel, K., Bond, M., Santos, B.A., Baulcombe, D.C.. 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859-874. doi: 10.1105/tpc.111.095380http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000303763000005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Shuai, P., Liang, D., Zhang, Z., Yin, W., Xia, X.. 2013. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233. doi: 10.1186/1471-2164-14-233
Sunkar, R., Zhu, J.K.. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001-2019. doi: 10.1105/tpc.104.022830
Tang, G., Reinhart, B.J., Bartel, D.P., Zamore, P.D.. 2003. A biochemical framework for RNA silencing in plants. Genes Dev. 17:49-63. doi: 10.1101/gad.1048103
Trindade, I., Capitao, C., Dalmay, T., Fevereiro, M.P., Santos, D.M.. 2010. miR398 and miR408 are upregulated in response to water deficit in Medicago truncatula. Planta 231:705-716. doi: 10.1007/s00425-009-1078-0http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000273626500018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Wan, H., Yuan, W., Ye, Q., Wang, R., Ruan, M., Li, Z. et al. 2012. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: Characterization, genetic variation, functional divergence and expression patterns. BMC Genomics 13:502. doi: 10.1186/1471-2164-13-502
Wei, M., Wei, H., Wu, M., Song, M., Zhang, J., Yu, J. et al. 2013. Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol. 13:66. doi: 10.1186/1471-2229-13-66
Wei, W., Huang, J., Hao, Y.J., Zou, H.F., Wang, H., Zhao, J. et al. 2009. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS ONE 4(9):e7209. doi: 10.1371/journal.pone.0007209
Yang, J., Liu, X., Xu, B., Zhao, N., Yang, X., Zhang, M.. 2013. Identification of miRNAs and their targets using high-throughput sequencing and degradome analysis in cytoplasmic male-sterile and its maintainer fertile lines of Brassica juncea. BMC Genomics 14:9. doi: 10.1186/1471-2164-14-9
Yang, J., Zhang, N., Mi, X., Wu, L., Ma, R., Zhu, X. et al. 2014. Identification of miR159s and their target genes and expression analysis under drought stress in potato. Comput. Biol. Chem. 53:204-213. doi: 10.1016/j.compbiolchem.2014.09.009http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000347580700005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Zhang, X., Yang, G., Shi, R., Han, X., Qi, L., Wang, R. et al. 2013. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses. Plant Physiol. Biochem. 67:189-198. doi: 10.1016/j.plaphy.2013.03.013http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000319711700023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Zhai, J., Jeong, D.H., De Paoli, E., Park, S., Rosen, B.D., Li, Y. et al. 2011. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25:2540-2553. doi: 10.1101/gad.177527.111http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000298342200011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Zhao, B., Ge, L., Liang, R., Li, W., Ruan, K., Lin, H., Jin, Y.. 2009. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol. Biol. 10:29. doi: 10.1186/1471-2199-10-29
Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H. et al. 2007. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354:585-590. doi: 10.1016/j.bbrc.2007.01.022http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000244050000042&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., Luo, L.. 2010. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Exp. Bot. 61:4157-4168. doi: 10.1093/jxb/erq237http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000283130300004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c
Zhou, S., Sauve, R., Thannhauser, T.W.. 2009. Proteome changes induced by aluminium stress in tomato roots. J. Exp. Bot. 60:1849-1857. doi: 10.1093/jxb/erp065http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=Agronomy_sub&KeyUT=WOS:000265524400026&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=9992b2403adf8c36119d0b6fce39b97c