Ranging behaviours across ecological and anthropogenic disturbance gradients: a pan-African perspective of giraffe (Giraffa spp.) space use
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37357852
PubMed Central
PMC10291724
DOI
10.1098/rspb.2023.0912
Knihovny.cz E-zdroje
- Klíčová slova
- continuous time movement modelling, daily movement, home range, mixed effects meta-regression, movements, productivity gradients,
- MeSH
- antropogenní vlivy MeSH
- ekosystém * MeSH
- lidé MeSH
- pohyb MeSH
- žirafy * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
Animal movement behaviours are shaped by diverse factors, including resource availability and human impacts on the landscape. We generated home range estimates and daily movement rate estimates for 149 giraffe (Giraffa spp.) from all four species across Africa to evaluate the effects of environmental productivity and anthropogenic disturbance on space use. Using the continuous time movement modelling framework and a novel application of mixed effects meta-regression, we summarized overall giraffe space use and tested for the effects of resource availability and human impact on 95% autocorrelated kernel density estimate (AKDE) size and daily movement. The mean 95% AKDE was 359.9 km2 and the mean daily movement was 14.2 km, both with marginally significant differences across species. We found significant negative effects of resource availability, and significant positive effects of resource heterogeneity and protected area overlap on 95% AKDE size. There were significant negative effects of overall anthropogenic disturbance and positive effects of the heterogeneity of anthropogenic disturbance on daily movements and 95% AKDE size. Our results provide unique insights into the interactive effects of resource availability and anthropogenic development on the movements of a large-bodied browser and highlight the potential impacts of rapidly changing landscapes on animal space-use patterns.
Conservation Science and Wildlife Health San Diego Zoo Wildlife Alliance San Diego CA USA
Department of Biology University of Maryland College Park MD USA
Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
Giraffe Conservation Foundation PO Box 86099 Eros Windhoek Namibia
Selati Game Reserve 0895 Gravelotte South Africa
Wild Africa Conservation Niamey Niger
Wildscapes Veterinary and Conservation Services Hoedspruit South Africa
Zobrazit více v PubMed
Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse PE. 2008. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA 105, 19 052-19 059. (10.1073/pnas.0800375105) PubMed DOI PMC
Allen AM, Singh NJ. 2016. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 1-13. (10.3389/fevo.2015.00155) DOI
Van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A. 2011. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? J. Anim. Ecol. 80, 771-785. (10.1111/j.1365-2656.2011.01829.x) PubMed DOI
Börger L, Dalziel BD, Fryxell JM. 2008. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637-650. (10.1111/j.1461-0248.2008.01182.x) PubMed DOI
Noonan MJ, et al. 2020. Effects of body size on estimation of mammalian area requirements. Conserv. Biol. 34, 1017-1028. (10.1111/cobi.13495) PubMed DOI PMC
Singh NJ, Ericsson G. 2014. Changing motivations during migration: linking movement speed to reproductive status in a migratory large mammal. Biol. Lett. 10, 20140379. (10.1098/rsbl.2014.0379) PubMed DOI PMC
Peery MZ. 2000. Factors affecting interspecies variation in home-range size of raptors. Auk 117, 511-517. (10.2307/4089736) DOI
Väli Ü, Mirski P, Sellis U, Dagys M, Maciorowski G. 2018. Genetic determination of migration strategies in large soaring birds: evidence from hybrid eagles. Proc. R. Soc. B 285, 20180855. (10.1098/rspb.2018.0855) PubMed DOI PMC
Lindstedt SL, Miller BJ, Buskirk S. 1986. Home range, time, and body size in mammals. Ecology 67, 413-418. (10.2307/1938584) DOI
Stabach JA, et al. 2022. Increasing anthropogenic disturbance restricts wildebeest movement across East African grazing systems. Front. Ecol. Evol. 10, 846171. (10.3389/fevo.2022.846171) DOI
Ofstad EG, Herfindal I, Solberg EJ, Sæther BE. 2016. Home ranges, habitat and body mass: simple correlates of home range size in ungulates. Proc. Biol. Sci. 283, 20161234. (10.1098/rspb.2016.1234) PubMed DOI PMC
Hebblewhite M, Merrill EH. 2009. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445-3454. (10.1890/08-2090.1) PubMed DOI
Owen-Smith N, Traill LW. 2017. Space use patterns of a large mammalian herbivore distinguished by activity state: fear versus food? J. Zool. 303, 281-290. (10.1111/jzo.12490) DOI
Snider MH, et al. 2021. Home range variation in leopards living across the human density gradient. J. Mammal. 102, 1138-1148. (10.1093/jmammal/gyab068) DOI
Tucker MA, et al. 2018. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 469, 466-469. (10.1126/science.aam9712) PubMed DOI
Wall J, et al. 2021. Human footprint and protected areas shape elephant range across Africa. Curr. Biol. 31, 2437-2445.e4. (10.1016/j.cub.2021.03.042) PubMed DOI
Morato RG, et al. 2016. Space use and movement of a neotropical top predator: the endangered jaguar. PLoS ONE 11, 1-17. (10.1371/journal.pone.0168176) PubMed DOI PMC
Newmark WD. 2008. Isolation of African protected areas. Front. Ecol. Environ. 6, 321-328. (10.1890/070003) DOI
Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F. 2006. Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob. Change Biol. 12, 424-440. (10.1111/j.1365-2486.2006.01115.x) DOI
Thuiller W, et al. 2008. Predicting global change impacts on plant species' distributions: future challenges. Perspect. Plant Ecol. Evol. Systematics 9, 137-152. (10.1016/j.ppees.2007.09.004) DOI
Dickie M, Serrouya R, Avgar T, Mcloughlin P, Mcnay RS, Demars C, Boutin S, Ford AT. 2022. Resource exploitation efficiency collapses the home range of an apex predator. Ecology 103, 1-12. (10.1002/ecy.3642) PubMed DOI
Bjørneraas K, Herfindal I, Solberg EJ, Sæther B-E, Van Moorter B, Rolandsen CM. 2012. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore. Oecologia 168, 231-243. (10.1007/s00442-011-2072-3) PubMed DOI PMC
Rizzuto M, Leroux SJ, Vander Wal E, Richmond IC, Heckford TR, Balluffi-Fry J, Wiersma YF. 2021. Forage stoichiometry predicts the home range size of a small terrestrial herbivore. Oecologia 197, 327-338. (10.1007/s00442-021-04965-0) PubMed DOI
Mueller T, et al. 2011. How landscape dynamics link individual- to population-level movement patterns: a multispecies comparison of ungulate relocation data. Global Ecol. Biogeogr. 20, 683-694. (10.1111/j.1466-8238.2010.00638.x) DOI
Thatte P, Chandramouli A, Tyagi A, Patel K, Baro P, Chhattani H, Ramakrishnan U. 2020. Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers. Distrib. 26, 299-314. (10.1111/ddi.13022) DOI
Thompson JJ, et al. 2021. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457-3466. (10.1016/j.cub.2021.06.029) PubMed DOI
Fauvelle C, Diepstraten R, Jessen T. 2017. A meta-analysis of home range studies in the context of trophic levels: Implications for policy-based conservation. PLoS ONE 12, 1-12. (10.1371/journal.pone.0173361) PubMed DOI PMC
Laver PN, Kelly MJ. 2008. A critical review of home range studies. J. Wildlife Manag. 72, 290-298. (10.2193/2005-589) DOI
Hart EE, Fennessy J, Hauenstein S, Ciuti S. 2020. Intensity of giraffe locomotor activity is shaped by solar and lunar zeitgebers. Behav. Processes 178, 104178. (10.1016/j.beproc.2020.104178) PubMed DOI
Hart EE, Fennessy J, Rasmussen HB, Brown MB, Muneza AB, Ciuti S. 2020. Precision and performance of an 180g solar-powered GPS device for tracking medium to large-bodied terrestrial mammals. Wildlife Biol. 2020, 1-8. (10.2981/wlb.00669) DOI
Fleming CH, Fagan WF, Mueller T, Olson KA, Leimgruber P, Calabrese JM. 2015. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182-1188. (10.1890/14-2010.1) PubMed DOI
Wang L, Diao C, Xian G, Yin D, Lu Y, Zou S, Erickson TA. 2020. A summary of the special issue on remote sensing of land change science with Google Earth engine. Remote Sens. Environ. 248, 112002. (10.1016/j.rse.2020.112002) DOI
Brown MB, Kulkarni T, Ferguson S, Fennessy S, Muneza A, Stabach JA, Fennessy J. 2021. Conservation status of giraffe: evaluating contemporary distribution and abundance with evolving taxonomic perspectives. In Imperiled: the encyclopedia of conservation), pp. 1-17, 1st edn.
O'connor D, et al. 2019. Updated geographic range maps for giraffe, Giraffa spp., throughout sub-Saharan Africa, and implications of changing distributions for conservation. Mammal Rev. 49, 285-299. (10.1111/mam.12165) DOI
Brown MB, Bolger DT, Fennessy J. 2019. All the eggs in one basket: a countrywide assessment of current and historical giraffe population distribution in Uganda. Global Ecol. Conserv. 19, e00612. (10.1016/j.gecco.2019.e00612) DOI
Le Pendu Y, Ciofolo I. 1999. Seasonal movements of giraffes in Niger. J. Trop. Ecol. 15, 341-353. (10.1017/S0266467499000863) DOI
Leuthold W, Leuthold BM. 1975. Temporal patterns of reproduction in ungulates of Tsavo East National Park, Kenya. East Afr. Wildlife J. 13, 159-169. (10.1111/j.1365-2028.1975.tb00133.x) DOI
Brown MB, Bolger DT. 2020. Male-biased partial migration in a giraffe population. Front. Ecol. Evol. 7, 1-14. (10.3389/fevo.2019.00524) DOI
Pellew RA. 1984. Food consumption and energy budgets of the giraffe. J. Appl. Ecol. 21, 141-159. (10.2307/2403043) DOI
Van Der Jeugd HP, Prins HHT. 2000. Movements and group structure of giraffe (Giraffa camelopardalis) in Lake Manyara National Park, Tanzania. J. Zool. 251, 15-21. (10.1111/j.1469-7998.2000.tb00588.x) DOI
Fennessy J. 2009. Home range and seasonal movements of Giraffa camelopardalis angolensis in the northern Namib Desert. Afr. J. Ecol. 47, 318-327. (10.1111/j.1365-2028.2008.00963.x) DOI
Flanagan SE, Brown MB, Fennessy J, Bolger DT. 2016. Use of home range behaviour to assess establishment in translocated giraffes. Afr. J. Ecol. 54, 365-374. (10.1111/aje.12299) DOI
Knüsel MA, Lee DE, König B, Bond ML. 2019. Correlates of home range sizes of giraffes, Giraffa camelopardalis. Anim. Behav. 149, 143-151. (10.1016/j.anbehav.2019.01.017) DOI
Young TP, Isbell LA. 1991. Sex differences in giraffe feeding ecology : energetic and social constraints. Ethology 87, 79-89. (10.1111/j.1439-0310.1991.tb01190.x) DOI
D'haen M, Fennessy J, Stabach JA, Brandlová K. 2019. Population structure and spatial ecology of Kordofan giraffe in Garamba National Park, Democratic Republic of Congo. Ecol. Evol. 9, 11 395-11 405. (10.1002/ece3.5640) PubMed DOI PMC
Coimbra RT, Winter S, Kumar V, Koepfli KP, Gooley RM, Dobrynin P, Fennessy J, Janke A. 2021. Whole-genome analysis of giraffe supports four distinct species. Curr. Biol. 31, 1-10. (10.1016/j.cub.2021.04.033) PubMed DOI
Winter S, Fennessy J, Janke A. 2018. Limited introgression supports division of giraffe into four species. Ecol. Evol. 8, 1-11. (10.1002/ece3.4490) PubMed DOI PMC
Fennessy J, Bidon T, Reuss F, Kumar V, Elkan P, Nilsson M, Vamberger M, Fritz U, Janke A. 2016. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26, 2543-2549. (10.1016/j.cub.2016.07.036) PubMed DOI
Calabrese JM, Fleming CH, Gurarie E. 2016. Ctmm: an R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124-1132. (10.1111/2041-210X.12559) DOI
Noonan MJ, Fleming CH, Akre TS, Drescher-Lehman J, Gurarie E, Kays R, Calabrese JM. 2019. Scale-insensitive estimation of speed and distance traveled from animal tracking data. Mov. Ecol. 7, 1-15. PubMed PMC
Owen-Smith N, Fryxell JM, Merrill EH. 2010. Foraging theory upscaled: the behavioural ecology of herbivore movement. Phil. Trans. R. Soc. B 365, 2267-2278. (10.1098/rstb.2010.0095) PubMed DOI PMC
Bouvet A, Mermoz S, Le Toan T, Villard L, Mathieu R, Naidoo L, Asner GP. 2018. An above-ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156-173. (10.1016/j.rse.2017.12.030) DOI
Mcqualter KN, Chase MJ, Fennessy JT, Mcleod SR, Legget KEA. 2015. Home ranges, seasonal ranges and daily movements of giraffe (Giraffa camelopardalis giraffe) in northern Botswana. Afr. J. Ecol. 54, 99-102. (10.1111/aje.12244) DOI
Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF. 2014. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, E154-E167. (10.1086/675504) PubMed DOI
Northrup JM, Anderson CR, Wittemyer G. 2014. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildlife Manag. 78, 731-738. (10.1002/jwmg.705) DOI
Dunn JE, Gipson PS. 1977. Analysis of radio telemetry data in studies of home range. Biometrics 33, 85. (10.2307/2529305) DOI
Uhlenbeck GE, Ornstein LS. 1930. On the theory of the Brownian motion. Phys. Rev. 36, 823-941. (10.1103/PhysRev.36.823) DOI
R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.R-project.org/.
UNEP-WCMC and IUCN. 2016. Protected planet: the World Database on Protected Areas (WDPA)/OECM database. See www.protectedplanet.net.
Venter, et al. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7, 12558. 10.1038/ncomms12558. DOI
Aybar C, Wu Q, Bautista L, Yali R, Barja A. 2020. rgee: an R package for interacting with Google Earth Engine. J. Open Source Software 5, 2272. (10.21105/joss.02272) DOI
Crego RD, Masolele MM, Connette G, Stabach JA. 2021. Enhancing animal movement analyses: spatiotemporal matching of animal positions with remotely sensed data using google earth engine and r. Remote Sensing 13, 4154. (10.3390/rs13204154) DOI
Crego RD, Ogutu JO, Wells HBM, Ojwang GO, Martins DJ, Leimgruber P, Stabach JA. 2020. Spatiotemporal dynamics of wild herbivore species richness and occupancy across a savannah rangeland: Implications for conservation. Biol. Conserv. 242, 108436. (10.1016/j.biocon.2020.108436) DOI
Viechtbauer W. 2010. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 36, 1-48. (10.18637/jss.v036.i03) DOI
Langan D, Higgins JPT, Simmonds M. 2017. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res. Synthesis Methods 8, 181-198. (10.1002/jrsm.1198) PubMed DOI
Viechtbauer W. 2005. Bias and efficiency of meta-analytic variance estimators in the random-effects mode. J. Educ. Behav. Stat. 30, 261-293. (10.3102/10769986030003261) DOI
Higgins JPT, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539-1558. (10.1002/sim.1186) PubMed DOI
Cochran WG. 1954. The combination of estimates from different experiments. Biometrics 10, 101-129. (10.2307/3001666) DOI
Higgins JP, Thompson SG, Deeks JJ, Altman DG. 2003. Measuring inconsistency in meta-analyses. BMJ 327, 557-560. (10.1136/bmj.327.7414.557) PubMed DOI PMC
Berry PSM. 1978. Range movements of giraffe in the Luangwa Valley, Zambia. East Afr. Wildlife J. 16, 77-83. (10.1111/j.1365-2028.1978.tb00429.x) DOI
Leuthold B, Leuthold W. 1978. Ecology of the giraffe in Tsavo East National Park, Kenya. Afr. J. Ecol. 16, 1-20. (10.1111/j.1365-2028.1978.tb00419.x) DOI
Du Toit JT. 1990. Home range: body mass relations: a field study on African browsing ruminants. Oecologia 85, 301-303. (10.1007/BF00319416) PubMed DOI
Vanderwaal KL, Wang H, Mccowan B, Fushing H, Isbell LA. 2014. Multilevel social organization and space use in reticulated giraffe (Giraffa camelopardalis). Behav. Ecol. 25, 17-26. (10.1093/beheco/art061) DOI
Deacon F, Smit N. 2017. Spatial ecology and habitat use of giraffe (Giraffa camelopardalis) in South Africa. Basic Appl. Ecol. 21, 55-65. (10.1016/j.baae.2017.04.003) DOI
Benitez L, Kilian JW, Wittemyer G, Hughey LF, Fleming CH, Leimgruber P, Jared P. 2022. Precipitation, vegetation productivity, and human impacts control home range size of elephants in dryland systems in northern Namibia. Ecol. Evol. 12, 1-14. (10.1002/ece3.9288) PubMed DOI PMC
Naidoo R, Preez PD, Stuart-Hill G, Chris Weaver L, Jago M, Wegmann M. 2012. Factors affecting intraspecific variation in home range size of a large African herbivore. Landscape Ecol. 27, 1523-1534. (10.1007/s10980-012-9807-3) DOI
Bevanda M, Fronhofer EA, Heurich M, Muller J, Reineking B, Sponseller R. 2015. Landscape configuration is a major determinant of home range size variation. Ecosphere 6, 1-12. (10.1890/ES15-00154.1) DOI
Luccarini S, Mauri L, Ciuti S, Lambert P, Apollonio M. 2006. Red deer (Cervus elaphus) spatial use in the Italian Alps: home range patterns, seasonal migrations, and effects of snow and winter feeding. Ethol. Ecol. Evol. 18, 127-145.
Reinecke H, Leinen L, Thißen I, Meißner M, Herzog S, Schütz S, Kiffner C. 2014. Home range size estimates of red deer in Germany: environmental, individual and methodological correlates. Eur. J. Wildlife Res. 60, 237-247. (10.1007/s10344-013-0772-1) DOI
Mcnab BK. 1963. Bioenergetics and the determination of home range size. Am. Nat. 97, 133. (10.1086/282264) DOI
Moorter BV, Bunnefeld N, Panzacchi M, Rolandsen CM, Solberg EJ, Sæther B. 2013. Understanding scales of movement: animals ride waves and ripples of environmental change. J. Anim. Ecol. 82, 770-780. (10.1111/1365-2656.12045) PubMed DOI
Beyer HL, Gurarie E, Börger L, Panzacchi M, Basille M, Herfindal I, Van Moorter B, R. Lele S, Matthiopoulos J. 2014. ‘You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals. J. Anim. Ecol. 85, 43-53. (10.1111/1365-2656.12275) PubMed DOI
Cassidy L, Fynn R, Sethebe B. 2013. Effects of restriction of wild herbivore movement on woody and herbaceous vegetation in the Okavango Delta Botswana. Afr. J. Ecol. 51, 513-527. (10.1111/aje.12061) DOI
Hering R, Hauptfleisch M, Jago M, Smith T, Kramer-Schadt S, Stiegler J, Blaum N. 2022. Don ‘t stop me now: managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss. Front. Ecol. Evol. 10, 907079. (10.3389/fevo.2022.907079) DOI
Pirie TJ, Thomas RL, Fellowes MDE. 2017. Game fence presence and permeability influences the local movement and distribution of South African mammals. Afr. Zool. 52, 217-227. (10.1080/15627020.2017.1410074) DOI
Wittemyer G, Elsen P, Bean WT, Burton ACO, Brashares JS. 2008. Accelerated human population growth at protected area edges. Science 321, 123-126. (10.1126/science.1158900) PubMed DOI
Muntifering RD, Grecian WJ, Kerley GI, Linklater WL. 2016. Standardising home range studies for improved management of the critically endangered black rhinoceros. PLoS ONE 11, e0150571. (10.1371/journal.pone.0150571) PubMed DOI PMC
Kaszta Z, Marino J, Ramoelo A, Wolf E. 2016. Bulk feeder or selective grazer: African buffalo space use patterns based on fine-scale remotely sensed data on forage quality and quantity. Ecol. Modelling 323, 115-122. (10.1016/j.ecolmodel.2015.12.006) DOI
Hirt MR, Barnes AD, Gentile A, Pollock LJ, Rosenbaum B, Thuiller W, Tucker MA, Brose U. 2021. Environmental and anthropogenic constraints on animal space use drive extinction risk worldwide. Ecol. Lett. 24, 2576-2585. (10.1111/ele.13872) PubMed DOI
Riotte-Lambert L, Matthiopoulos J. 2020. Environmental predictability as a cause and consequence of animal movement. Trends Ecol. Evol. 35, 163-174. (10.1016/j.tree.2019.09.009) PubMed DOI
Mansfield LA, Nowack PJ, Kasoar M, Everitt RG, Collins WJ, Voulgarakis A. 2020. Predicting global patterns of long-term climate change from short-term simulations using machine learning. Npj Clim. Atmos. Sci. 3, 44. (10.1038/s41612-020-00148-5) DOI
Sintayehu DW. 2018. Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosyst. Health Sustain. 4, 225-239. (10.1080/20964129.2018.1530054) DOI
Gerland P, et al. 2014. World population stabilization unlikely this century. Science 346, 234-237. (10.1126/science.1257469) PubMed DOI PMC
Brown MB2023. Data from: Ranging behaviours across ecological and anthropogenic disturbance gradients: a pan-African perspective of giraffe (Giraffa spp.) space use. Dryad Digital Repository. ( ) DOI
Brown MB2023. Ranging behaviours across ecological and anthropogenic disturbance gradients: a pan-African perspective of giraffe (Giraffa spp.) space use. Figshare. ( ) DOI
Heads up-Four Giraffa species have distinct cranial morphology
Saving the Last West African Giraffe Population: A Review of Its Conservation Status and Management
figshare
10.6084/m9.figshare.c.6677587