A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates-Bioinspired Sulfoxidation Catalysts
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26556319
PubMed Central
PMC6331787
DOI
10.3390/molecules201119667
PII: molecules201119667
Knihovny.cz E-zdroje
- Klíčová slova
- click chemistry, cyclodextrin, flavin, green chemistry, monooxygenase, oxidation, sulfoxides,
- MeSH
- cyklodextriny chemie MeSH
- flaviny chemie MeSH
- katalýza MeSH
- sulfoxidy chemie MeSH
- syntetická chemie okamžité shody * MeSH
- technologie zelené chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklodextriny MeSH
- flaviny MeSH
- sulfoxidy MeSH
A click chemistry approach based on the reaction between alkynylflavins and mono(6-azido-6-deoxy)-β-cyclodextrin has proven to be a useful tool for the synthesis of flavin-cyclodextrin conjugates studied as monooxygenase mimics in enantioselective sulfoxidations.
Zobrazit více v PubMed
Iida H., Imada Y., Murahashi S.I. Biomimetic flavin-catalysed reactions for organic synthesis. Org. Biomol. Chem. 2015;13:7599–7613. doi: 10.1039/C5OB00854A. PubMed DOI
Cibulka R. Artificial flavin systems for chemoselective and stereoselective oxidations. Eur. J. Org. Chem. 2015;2015:915–932. doi: 10.1002/ejoc.201403275. DOI
De Gonzalo G., Fraaije M.W. Recent developments in flavin-based catalysis. ChemCatChem. 2013;5:403–415. doi: 10.1002/cctc.201200466. DOI
Zelenka J., Hartman T., Klímová K., Hampl F., Cibulka R. Phase-transfer catalysis in oxidations based on the covalent bonding of hydrogen peroxide to amphiphilic flavinium salts. ChemCatChem. 2014;6:2843–2846. doi: 10.1002/cctc.201402533. DOI
Imada Y., Kitagawa T., Iwata S., Komiya N., Naota T. Oxidation of sulfides with hydrogen peroxide catalyzed by synthetic flavin adducts with dendritic bis(acylamino)pyridines. Tetrahedron. 2014;70:495–501. doi: 10.1016/j.tet.2013.11.024. DOI
Ménová P., Dvořáková H., Eigner V., Ludvík J., Cibulka R. Electron-deficient alloxazinium salts: Efficient organocatalysts of mild and chemoselective sulfoxidations with hydrogen peroxide. Adv. Synth. Catal. 2013;355:3451–3462. doi: 10.1002/adsc.201300617. DOI
Jurok R., Hodačová J., Eigner V., Dvořáková H., Setnička V., Cibulka R. Planar chiral flavinium salts: Synthesis and evaluation of the effect of substituents on the catalytic efficiency in enantioselective sulfoxidation reactions. Eur. J. Org. Chem. 2013;2013:7724–7738. doi: 10.1002/ejoc.201300847. DOI
Imada Y., Takagishi M., Komiya N., Naota T. Oxidation of sulfides with hydrogen peroxide catalyzed by vitamin B2 derivatives. Synth. Commun. 2013;43:3064–3071. doi: 10.1080/00397911.2013.767912. DOI
Shinkai S., Yamaguchi T., Manabe O., Toda F. Enantioselective oxidation of sulphides with chiral 4a-hydroperoxyflavin. J. Chem. Soc. Chem. Commun. 1988:1399–1401. doi: 10.1039/c39880001399. DOI
Huijbers M.M.E., Montersino S., Westphal A.H., Tischler D., van Berkel W.J.H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 2014;544:2–17. doi: 10.1016/j.abb.2013.12.005. PubMed DOI
Forneris F., Heuts D.P.H.M., Delvecchio M., Rovida S., Fraaije M.W., Mattevi A. Structural analysis of the catalytic mechanism and stereoselectivity in streptomyces coelicolor alditol oxidase. Biochemistry. 2008;47:978–985. doi: 10.1021/bi701886t. PubMed DOI
Matsui T., Dekishima Y., Ueda M. Biotechnological production of chiral organic sulfoxides: Current state and perspectives. Appl. Microbiol. Biotechnol. 2014;98:7699–7706. doi: 10.1007/s00253-014-5932-z. PubMed DOI
Orru R., Dudek H.M., Martinoli C., Torres Pazmiño D.E., Royant A., Weik M., Fraaije M.W., Mattevi A. Snapshots of enzymatic Baeyer-Villiger catalysis: Oxygen activation and intermediate stabilization. J. Biol. Chem. 2011;286:29284–29291. doi: 10.1074/jbc.M111.255075. PubMed DOI PMC
Rioz-Martinez A., Kopacz M., de Gonzalo G., Torres Pazmino D.E., Gotor V., Fraaije M.W. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org. Biomol. Chem. 2011;9:1337–1341. doi: 10.1039/c0ob00988a. PubMed DOI
Colonna S., Sordo S.D., Gaggero N., Carrea G., Pasta P. Enzyme-mediated catalytic asymmetric oxidations. Heteroat. Chem. 2002;13:467–473. doi: 10.1002/hc.10074. DOI
Holland H.L. Biotransformation of organic sulfides. Nat. Prod. Rep. 2001;18:171–181. doi: 10.1039/b002681f. PubMed DOI
Breslow R., Dong S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 1998;98:1997–2012. doi: 10.1021/cr970011j. PubMed DOI
Marchetti L., Levine M. Biomimetic catalysis. ACS Catal. 2011;1:1090–1118. doi: 10.1021/cs200171u. DOI
Takahashi K. Organic reactions mediated by cyclodextrins. Chem. Rev. 1998;98:2013–2034. doi: 10.1021/cr9700235. PubMed DOI
Kanagaraj K., Suresh P., Pitchumani K. Per-6-amino-β-cyclodextrin as a reusable promoter and chiral host for enantioselective Henry reaction. Org. Lett. 2010;12:4070–4073. doi: 10.1021/ol101658n. PubMed DOI
Shen H.-M., Ji H.-B. Amino alcohol-modified β-cyclodextrin inducing biomimetic asymmetric oxidation of thioanisole in water. Carbohydr. Res. 2012;354:49–58. doi: 10.1016/j.carres.2012.03.034. PubMed DOI
Suresh P., Pitchumani K. Per-6-amino-β-cyclodextrin catalyzed asymmetric michael addition of nitromethane and thiols to chalcones in water. Tetrahedron Asymmetry. 2008;19:2037–2044. doi: 10.1016/j.tetasy.2008.08.014. DOI
Chan W.-K., Yu W.-Y., Che C.-M., Wong M.-K. A cyclodextrin-modified ketoester for stereoselective epoxidation of alkenes. J. Org. Chem. 2003;68:6576–6582. doi: 10.1021/jo034296d. PubMed DOI
Rousseau C., Christensen B., Bols M. Artificial epoxidase II. Synthesis of cyclodextrin ketoesters and epoxidation of alkenes. Eur. J. Org. Chem. 2005;2005:2734–2739. doi: 10.1002/ejoc.200500034. DOI
Schlatter A., Kundu M.K., Woggon W.-D. Enantioselective reduction of aromatic and aliphatic ketones catalyzed by ruthenium complexes attached to β-cyclodextrin. Angew. Chem. Int. Ed. 2004;43:6731–6734. doi: 10.1002/anie.200460102. PubMed DOI
Ye H.P., Tong W., D’Souza V.T. Efficient catalysis of a redox reaction by an artificial enzyme. J. Am. Chem. Soc. 1992;114:5470–5472. doi: 10.1021/ja00039a094. DOI
Ye H., Tong W., D’Souza V.T. Flavocyclodextrins as artificial redox enzymes. Part 4. Catalytic reactions of alcohols, aldehydes and thiols. J. Chem. Soc. Perkin Trans. 2. 1994:2431–2438. doi: 10.1039/p29940002431. DOI
D’Souza V.T. Modification of cyclodextrins for use as artificial enzymes. Supramol. Chem. 2003;15:221–229. doi: 10.1080/1061027031000078220. DOI
Mojr V., Herzig V., Buděšínský M., Cibulka R., Kraus T. Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem. Commun. 2010;46:7599–7601. doi: 10.1039/c0cc02562c. PubMed DOI
Mojr V., Buděšínský M., Cibulka R., Kraus T. Alloxazine-cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Org. Biomol. Chem. 2011;9:7318–7326. doi: 10.1039/c1ob05934c. PubMed DOI
Hartman T., Herzig V., Buděšínský M., Jindřich J., Cibulka R., Kraus T. Flavin-cyclodextrin conjugates: Effect of the structure on the catalytic activity in enantioselective sulfoxidations. Tetrahedron Asymmetry. 2012;23:1571–1583. doi: 10.1016/j.tetasy.2012.10.017. DOI
Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI
Amblard F., Cho J.H., Schinazi R.F. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009;109:4207–4220. doi: 10.1021/cr9001462. PubMed DOI PMC
Faugeras P.-A., Boëns B., Elchinger P.-H., Brouillette F., Montplaisir D., Zerrouki R., Lucas R. When cyclodextrins meet click chemistry. Eur. J. Org. Chem. 2012;2012:4087–4105. doi: 10.1002/ejoc.201200013. DOI
Xu L., Li Y., Li Y. Application of “click” chemistry to the construction of supramolecular functional systems. Asian J. Org. Chem. 2014;3:582–602. doi: 10.1002/ajoc.201300245. DOI
Melone L., Petroselli M., Pastori N., Punta C. Functionalization of cyclodextrins with N-hydroxyphthalimide moiety: A new class of supramolecular pro-oxidant organocatalysts. Molecules. 2015;20:15881–15892. doi: 10.3390/molecules200915881. PubMed DOI PMC
Carroll J.B., Jordan B.J., Xu H., Erdogan B., Lee L., Cheng L., Tiernan C., Cooke G., Rotello V.M. Model systems for flavoenzyme activity: Site-isolated redox behavior in flavin-functionalized random polystyrene copolymers. Org. Lett. 2005;7:2551–2554. doi: 10.1021/ol0505407. PubMed DOI
Subramani C., Yesilbag G., Jordan B.J., Li X., Khorasani A., Cooke G., Sanyal A., Rotello V.M. Recognition mediated encapsulation and isolation of flavin-polymer conjugates using dendritic guest moieties. Chem. Commun. 2010;46:2067–2069. doi: 10.1039/b926746h. PubMed DOI
Petter R.C., Salek J.S., Sikorski C.T., Kumaravel G., Lin F.T. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J. Am. Chem. Soc. 1990;112:3860–3868. doi: 10.1021/ja00166a021. DOI
Donnelly P.S., Zanatta S.D., Zammit S.C., White J.M., Williams S.J. “Click” cycloaddition catalysts: Copper(I) and copper(II) tris(triazolylmethyl)amine complexes. Chem. Commun. 2008:2459–2461. doi: 10.1039/b719724a. PubMed DOI
Bach R.D. In: General and Theoretical Aspects of the Peroxide Group, 2006. Rappoport Z., editor. Volume 2. John Wiley & Sons Ltd.; Chichester, UK: 2006. pp. 1–92.
De Gonzalo G., Torres Pazmiño D.E., Ottolina G., Fraaije M.W., Carrea G. 4-Hydroxyacetophenone monooxygenase from pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron Asymmetry. 2006;17:130–135. doi: 10.1016/j.tetasy.2005.11.024. DOI
Rioz-Martínez A., de Gonzalo G., Pazmiño D.E.T., Fraaije M.W., Gotor V. Enzymatic synthesis of novel chiral sulfoxides employing Baeyer-Villiger monooxygenases. Eur. J. Org. Chem. 2010;2010:6409–6416. doi: 10.1002/ejoc.201000890. DOI
Spinella A., Caruso T., Martino M., Sessa C. Synthesis of aplyolide A, ichthyotoxic macrolide isolated from the skin of the marine mollusk Aplysia depilans. Synlett. 2011;12:1971–1973.
Smith L.H. Tetrahydrofurfuryl bromide. Org. Synth. 1943;23:88–89. doi: 10.15227/orgsyn.023.0088. DOI
Jones E.R.H., Eglinton G., Whiting M.C. 4-Pentyn-1-ol. Org. Synth. 1963;4:755. doi: 10.1002/0471264180.os033.26. DOI
Rodríguez Rivero M., Alonso I., Carretero J.C. Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson–Khand reactions: Applications to the enantioselective synthesis of natural cyclopentanoids. Chem.-Eur. J. 2004;10:5443–5459. doi: 10.1002/chem.200400443. PubMed DOI
Cibulka R., Baxová L., Dvořáková H., Hampl F., Ménová P., Mojr V., Plancq B., Sayin S. Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media. Collect. Czechoslov. Chem. Commun. 2009;74:973–993. doi: 10.1135/cccc2009030. DOI
Nandwana V., Samuel I., Cooke G., Rotello V.M. Aromatic stacking interactions in flavin model systems. Acc. Chem. Res. 2012;46:1000–1009. doi: 10.1021/ar300132r. PubMed DOI
Mono-6-Substituted Cyclodextrins-Synthesis and Applications