A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates-Bioinspired Sulfoxidation Catalysts

. 2015 Nov 04 ; 20 (11) : 19837-48. [epub] 20151104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26556319

A click chemistry approach based on the reaction between alkynylflavins and mono(6-azido-6-deoxy)-β-cyclodextrin has proven to be a useful tool for the synthesis of flavin-cyclodextrin conjugates studied as monooxygenase mimics in enantioselective sulfoxidations.

Zobrazit více v PubMed

Iida H., Imada Y., Murahashi S.I. Biomimetic flavin-catalysed reactions for organic synthesis. Org. Biomol. Chem. 2015;13:7599–7613. doi: 10.1039/C5OB00854A. PubMed DOI

Cibulka R. Artificial flavin systems for chemoselective and stereoselective oxidations. Eur. J. Org. Chem. 2015;2015:915–932. doi: 10.1002/ejoc.201403275. DOI

De Gonzalo G., Fraaije M.W. Recent developments in flavin-based catalysis. ChemCatChem. 2013;5:403–415. doi: 10.1002/cctc.201200466. DOI

Zelenka J., Hartman T., Klímová K., Hampl F., Cibulka R. Phase-transfer catalysis in oxidations based on the covalent bonding of hydrogen peroxide to amphiphilic flavinium salts. ChemCatChem. 2014;6:2843–2846. doi: 10.1002/cctc.201402533. DOI

Imada Y., Kitagawa T., Iwata S., Komiya N., Naota T. Oxidation of sulfides with hydrogen peroxide catalyzed by synthetic flavin adducts with dendritic bis(acylamino)pyridines. Tetrahedron. 2014;70:495–501. doi: 10.1016/j.tet.2013.11.024. DOI

Ménová P., Dvořáková H., Eigner V., Ludvík J., Cibulka R. Electron-deficient alloxazinium salts: Efficient organocatalysts of mild and chemoselective sulfoxidations with hydrogen peroxide. Adv. Synth. Catal. 2013;355:3451–3462. doi: 10.1002/adsc.201300617. DOI

Jurok R., Hodačová J., Eigner V., Dvořáková H., Setnička V., Cibulka R. Planar chiral flavinium salts: Synthesis and evaluation of the effect of substituents on the catalytic efficiency in enantioselective sulfoxidation reactions. Eur. J. Org. Chem. 2013;2013:7724–7738. doi: 10.1002/ejoc.201300847. DOI

Imada Y., Takagishi M., Komiya N., Naota T. Oxidation of sulfides with hydrogen peroxide catalyzed by vitamin B2 derivatives. Synth. Commun. 2013;43:3064–3071. doi: 10.1080/00397911.2013.767912. DOI

Shinkai S., Yamaguchi T., Manabe O., Toda F. Enantioselective oxidation of sulphides with chiral 4a-hydroperoxyflavin. J. Chem. Soc. Chem. Commun. 1988:1399–1401. doi: 10.1039/c39880001399. DOI

Huijbers M.M.E., Montersino S., Westphal A.H., Tischler D., van Berkel W.J.H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 2014;544:2–17. doi: 10.1016/j.abb.2013.12.005. PubMed DOI

Forneris F., Heuts D.P.H.M., Delvecchio M., Rovida S., Fraaije M.W., Mattevi A. Structural analysis of the catalytic mechanism and stereoselectivity in streptomyces coelicolor alditol oxidase. Biochemistry. 2008;47:978–985. doi: 10.1021/bi701886t. PubMed DOI

Matsui T., Dekishima Y., Ueda M. Biotechnological production of chiral organic sulfoxides: Current state and perspectives. Appl. Microbiol. Biotechnol. 2014;98:7699–7706. doi: 10.1007/s00253-014-5932-z. PubMed DOI

Orru R., Dudek H.M., Martinoli C., Torres Pazmiño D.E., Royant A., Weik M., Fraaije M.W., Mattevi A. Snapshots of enzymatic Baeyer-Villiger catalysis: Oxygen activation and intermediate stabilization. J. Biol. Chem. 2011;286:29284–29291. doi: 10.1074/jbc.M111.255075. PubMed DOI PMC

Rioz-Martinez A., Kopacz M., de Gonzalo G., Torres Pazmino D.E., Gotor V., Fraaije M.W. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org. Biomol. Chem. 2011;9:1337–1341. doi: 10.1039/c0ob00988a. PubMed DOI

Colonna S., Sordo S.D., Gaggero N., Carrea G., Pasta P. Enzyme-mediated catalytic asymmetric oxidations. Heteroat. Chem. 2002;13:467–473. doi: 10.1002/hc.10074. DOI

Holland H.L. Biotransformation of organic sulfides. Nat. Prod. Rep. 2001;18:171–181. doi: 10.1039/b002681f. PubMed DOI

Breslow R., Dong S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 1998;98:1997–2012. doi: 10.1021/cr970011j. PubMed DOI

Marchetti L., Levine M. Biomimetic catalysis. ACS Catal. 2011;1:1090–1118. doi: 10.1021/cs200171u. DOI

Takahashi K. Organic reactions mediated by cyclodextrins. Chem. Rev. 1998;98:2013–2034. doi: 10.1021/cr9700235. PubMed DOI

Kanagaraj K., Suresh P., Pitchumani K. Per-6-amino-β-cyclodextrin as a reusable promoter and chiral host for enantioselective Henry reaction. Org. Lett. 2010;12:4070–4073. doi: 10.1021/ol101658n. PubMed DOI

Shen H.-M., Ji H.-B. Amino alcohol-modified β-cyclodextrin inducing biomimetic asymmetric oxidation of thioanisole in water. Carbohydr. Res. 2012;354:49–58. doi: 10.1016/j.carres.2012.03.034. PubMed DOI

Suresh P., Pitchumani K. Per-6-amino-β-cyclodextrin catalyzed asymmetric michael addition of nitromethane and thiols to chalcones in water. Tetrahedron Asymmetry. 2008;19:2037–2044. doi: 10.1016/j.tetasy.2008.08.014. DOI

Chan W.-K., Yu W.-Y., Che C.-M., Wong M.-K. A cyclodextrin-modified ketoester for stereoselective epoxidation of alkenes. J. Org. Chem. 2003;68:6576–6582. doi: 10.1021/jo034296d. PubMed DOI

Rousseau C., Christensen B., Bols M. Artificial epoxidase II. Synthesis of cyclodextrin ketoesters and epoxidation of alkenes. Eur. J. Org. Chem. 2005;2005:2734–2739. doi: 10.1002/ejoc.200500034. DOI

Schlatter A., Kundu M.K., Woggon W.-D. Enantioselective reduction of aromatic and aliphatic ketones catalyzed by ruthenium complexes attached to β-cyclodextrin. Angew. Chem. Int. Ed. 2004;43:6731–6734. doi: 10.1002/anie.200460102. PubMed DOI

Ye H.P., Tong W., D’Souza V.T. Efficient catalysis of a redox reaction by an artificial enzyme. J. Am. Chem. Soc. 1992;114:5470–5472. doi: 10.1021/ja00039a094. DOI

Ye H., Tong W., D’Souza V.T. Flavocyclodextrins as artificial redox enzymes. Part 4. Catalytic reactions of alcohols, aldehydes and thiols. J. Chem. Soc. Perkin Trans. 2. 1994:2431–2438. doi: 10.1039/p29940002431. DOI

D’Souza V.T. Modification of cyclodextrins for use as artificial enzymes. Supramol. Chem. 2003;15:221–229. doi: 10.1080/1061027031000078220. DOI

Mojr V., Herzig V., Buděšínský M., Cibulka R., Kraus T. Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem. Commun. 2010;46:7599–7601. doi: 10.1039/c0cc02562c. PubMed DOI

Mojr V., Buděšínský M., Cibulka R., Kraus T. Alloxazine-cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Org. Biomol. Chem. 2011;9:7318–7326. doi: 10.1039/c1ob05934c. PubMed DOI

Hartman T., Herzig V., Buděšínský M., Jindřich J., Cibulka R., Kraus T. Flavin-cyclodextrin conjugates: Effect of the structure on the catalytic activity in enantioselective sulfoxidations. Tetrahedron Asymmetry. 2012;23:1571–1583. doi: 10.1016/j.tetasy.2012.10.017. DOI

Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI

Amblard F., Cho J.H., Schinazi R.F. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009;109:4207–4220. doi: 10.1021/cr9001462. PubMed DOI PMC

Faugeras P.-A., Boëns B., Elchinger P.-H., Brouillette F., Montplaisir D., Zerrouki R., Lucas R. When cyclodextrins meet click chemistry. Eur. J. Org. Chem. 2012;2012:4087–4105. doi: 10.1002/ejoc.201200013. DOI

Xu L., Li Y., Li Y. Application of “click” chemistry to the construction of supramolecular functional systems. Asian J. Org. Chem. 2014;3:582–602. doi: 10.1002/ajoc.201300245. DOI

Melone L., Petroselli M., Pastori N., Punta C. Functionalization of cyclodextrins with N-hydroxyphthalimide moiety: A new class of supramolecular pro-oxidant organocatalysts. Molecules. 2015;20:15881–15892. doi: 10.3390/molecules200915881. PubMed DOI PMC

Carroll J.B., Jordan B.J., Xu H., Erdogan B., Lee L., Cheng L., Tiernan C., Cooke G., Rotello V.M. Model systems for flavoenzyme activity: Site-isolated redox behavior in flavin-functionalized random polystyrene copolymers. Org. Lett. 2005;7:2551–2554. doi: 10.1021/ol0505407. PubMed DOI

Subramani C., Yesilbag G., Jordan B.J., Li X., Khorasani A., Cooke G., Sanyal A., Rotello V.M. Recognition mediated encapsulation and isolation of flavin-polymer conjugates using dendritic guest moieties. Chem. Commun. 2010;46:2067–2069. doi: 10.1039/b926746h. PubMed DOI

Petter R.C., Salek J.S., Sikorski C.T., Kumaravel G., Lin F.T. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J. Am. Chem. Soc. 1990;112:3860–3868. doi: 10.1021/ja00166a021. DOI

Donnelly P.S., Zanatta S.D., Zammit S.C., White J.M., Williams S.J. “Click” cycloaddition catalysts: Copper(I) and copper(II) tris(triazolylmethyl)amine complexes. Chem. Commun. 2008:2459–2461. doi: 10.1039/b719724a. PubMed DOI

Bach R.D. In: General and Theoretical Aspects of the Peroxide Group, 2006. Rappoport Z., editor. Volume 2. John Wiley & Sons Ltd.; Chichester, UK: 2006. pp. 1–92.

De Gonzalo G., Torres Pazmiño D.E., Ottolina G., Fraaije M.W., Carrea G. 4-Hydroxyacetophenone monooxygenase from pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron Asymmetry. 2006;17:130–135. doi: 10.1016/j.tetasy.2005.11.024. DOI

Rioz-Martínez A., de Gonzalo G., Pazmiño D.E.T., Fraaije M.W., Gotor V. Enzymatic synthesis of novel chiral sulfoxides employing Baeyer-Villiger monooxygenases. Eur. J. Org. Chem. 2010;2010:6409–6416. doi: 10.1002/ejoc.201000890. DOI

Spinella A., Caruso T., Martino M., Sessa C. Synthesis of aplyolide A, ichthyotoxic macrolide isolated from the skin of the marine mollusk Aplysia depilans. Synlett. 2011;12:1971–1973.

Smith L.H. Tetrahydrofurfuryl bromide. Org. Synth. 1943;23:88–89. doi: 10.15227/orgsyn.023.0088. DOI

Jones E.R.H., Eglinton G., Whiting M.C. 4-Pentyn-1-ol. Org. Synth. 1963;4:755. doi: 10.1002/0471264180.os033.26. DOI

Rodríguez Rivero M., Alonso I., Carretero J.C. Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson–Khand reactions: Applications to the enantioselective synthesis of natural cyclopentanoids. Chem.-Eur. J. 2004;10:5443–5459. doi: 10.1002/chem.200400443. PubMed DOI

Cibulka R., Baxová L., Dvořáková H., Hampl F., Ménová P., Mojr V., Plancq B., Sayin S. Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media. Collect. Czechoslov. Chem. Commun. 2009;74:973–993. doi: 10.1135/cccc2009030. DOI

Nandwana V., Samuel I., Cooke G., Rotello V.M. Aromatic stacking interactions in flavin model systems. Acc. Chem. Res. 2012;46:1000–1009. doi: 10.1021/ar300132r. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mono-6-Substituted Cyclodextrins-Synthesis and Applications

. 2021 Aug 21 ; 26 (16) : . [epub] 20210821

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...