Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26565724
PubMed Central
PMC4796936
DOI
10.1038/ismej.2015.172
PII: ismej2015172
Knihovny.cz E-zdroje
- MeSH
- Alphaproteobacteria metabolismus MeSH
- fosfáty chemie MeSH
- fosfolipasy metabolismus MeSH
- fosfolipidy chemie MeSH
- fosfor chemie MeSH
- fylogeneze MeSH
- fytoplankton metabolismus MeSH
- glykosyltransferasy metabolismus MeSH
- heterotrofní procesy MeSH
- mikrobiologie vody MeSH
- mořská voda mikrobiologie MeSH
- oceány a moře MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře MeSH
- Středozemní moře MeSH
- Názvy látek
- fosfáty MeSH
- fosfolipasy MeSH
- fosfolipidy MeSH
- fosfor MeSH
- glykosyltransferasy MeSH
Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.
Clinical and Experimental Sciences Faculty of Medicine University of Southampton Southampton UK
Departament de Biologia Marina i Oceanografia Institut de Ciències del Mar CSIC Barcelona Spain
Department of Microbiology University of La Laguna La Laguna Spain
Hellenic Centre for Marine Research Oceanography Institute Heraklion Greece
Institute of Microbiology Center Algatech Třeboň Czech Republic
Zobrazit více v PubMed
Brown M V, Lauro FM, DeMaere MZ, Muir L, Wilkins D, Thomas T et al. (2012). Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8: 595. PubMed PMC
Carini P, Van Mooy BAS, Thrash JC, White AE, Zhao Y, Campbell EO et al. (2015). SAR11 lipid renovation in response to phosphate starvation. Proc Natl Acad Sci USA 112: 7767–7772. PubMed PMC
Carini P, White AE, Campbell EO, Giovannoni SJ. (2014). Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun 5: 4346. PubMed
Close HG, Wakeham SG, Pearson A. (2014). Lipid and 13C signatures of submicron and suspended particulate organic matter in the Eastern Tropical North Pacific: implications for the contribution of Bacteria. Deep Sea Res Part I Oceanogr Res Pap 85: 15–34.
Coleman ML, Chisholm SW. (2010). Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci USA 107: 18634–18639. PubMed PMC
Devers EA, Wewer V, Dombrink I, Dörmann P, Hölzl G. (2011). A processive glycosyltransferase involved in glycolipid synthesis during phosphate deprivation in Mesorhizobium loti. J Bacteriol 193: 1377–1384. PubMed PMC
Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Richter RA, Valas R et al. (2012). Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6: 1186–1199. PubMed PMC
Fanning KA. (1992). Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J Geophys Res 97: 5693.
Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM et al. (2013). Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7: 1026–1037. PubMed PMC
Gašparović B, Frka S, Koch BP, Zhu ZY, Bracher A, Lechtenfeld OJ et al. (2014). Factors influencing particulate lipid production in the East Atlantic Ocean. Deep Sea Res Part I Oceanogr Res Pap 89: 56–67.
Giovannoni SJ, Cameron Thrash J, Temperton B. (2014). Implications of streamlining theory for microbial ecology. ISME J 8: 1553–1565. PubMed PMC
Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D et al. (2005). Genome streamlining in a cosmopolitan oceanic bacterium. Science 309: 1242–1245. PubMed
Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ et al. (2012). Streamlining and core genome conservation among highly divergent members of the SAR11 clade. MBio 3: e00252–12. PubMed PMC
Havskum H, Thingstad TF, Scharek R, Peters F, Berdalet E, Sala MM et al. (2003). Silicate and labile DOC interfere in structuring the microbial food web via algal–bacterial competition for mineral nutrients: results of a mesocosm experiment. Limnol Oceanogr 48: 129–140.
Hölzl G, Leipelt M, Ott C, Zähringer U, Lindner B, Warnecke D et al. (2005). Processive lipid galactosyl/glucosyltransferases from Agrobacterium tumefaciens and Mesorhizobium loti display multiple specificities. Glycobiology 15: 874–886. PubMed
Icho T, Raetz CRH. (1983). Multiple genes for membrane-bound phosphatases in Escherichia coli and their action on phospholipid precursors. J Bacteriol 153: 722–730. PubMed PMC
Karl DM. (2014). Microbially mediated transformations of phosphorus in the sea: new views of an old cycle. Ann Rev Mar Sci 6: 279–337. PubMed
Klug RM, Benning C. (2001). Two enzymes of diacylglyceryl-O-4'-(N,N,N,-trimethyl)homoserine biosynthesis are encoded by btaA and btaB in the purple bacterium Rhodobacter sphaeroides. Proc Natl Acad Sci USA 98: 5910–5915. PubMed PMC
Krom MD, Emeis KC, Van Cappellen P. (2010). Why is the Eastern Mediterranean phosphorus limited? Prog Oceanogr 85: 236–244.
Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT, Baldwin AJ et al. (2014). Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510: 172–175. PubMed PMC
Lidbury I, Murrell JC, Chen Y. (2014). Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. Proc Natl Acad Sci USA 111: 2710–2715. PubMed PMC
Martin P, Van Mooy BAS, Heithoff A, Dyhrman ST. (2011). Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J 5: 1057–1060. PubMed PMC
Minnikin DE, Abdolrahimzadeh H, Baddiley J. (1974). Replacement of acidic phosphates by acidic glycolipids in Pseudomonas diminuta. Nature 249: 268–269. PubMed
Mira A, Ochman H, Moran NA. (2001). Deletional bias and the evolution of bacterial genomes. Trends Genet 17: 589–596. PubMed
Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW et al. (2013). Processes and patterns of oceanic nutrient limitation. Nat Geosci 6: 701–710.
Nakamura Y, Tsuchiya M, Ohta H. (2007). Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282: 29013–29021. PubMed
Parsons JB, Rock CO. (2013). Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52: 249–276. PubMed PMC
Pinhassi J, Gómez-Consarnau L, Alonso-Sáez L, Sala MM, Vidal M, Pedrós-Alio C et al. (2006). Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquat Microb Ecol 44: 241–252.
Popendorf KJ, Fredricks HF, Van Mooy BAS. (2013). Molecular ion-independent quantification of polar glycerolipid classes in marine plankton using triple quadrupole MS. Lipids 48: 185–195. PubMed
Popendorf KJ, Lomas MW, Van Mooy BAS. (2011). Microbial sources of intact polar diacylglycerolipids in the Western North Atlantic Ocean. Org Geochem 42: 803–811.
Riekhof WR, Andre C, Benning C. (2005). Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 441: 96–105. PubMed
Riekhof WR, Naik S, Bertrand H, Benning C, Voelker DR. (2014). Phosphate starvation in fungi induces the replacement of phosphatidylcholine with the phosphorus-free betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Eukaryot Cell 13: 749–757. PubMed PMC
Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S et al. (2007). The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5: e77. PubMed PMC
Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. (2010). The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol 12: 490–500. PubMed
Sebastián M, Ammerman JW. (2009). The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 3: 563–572. PubMed
Sebastián M, Gasol JM. (2013). Heterogeneity in the nutrient limitation of different bacterioplankton groups in the Eastern Mediterranean Sea. ISME J 7: 1665–1668. PubMed PMC
Sebastián M, Pitta P, González JM, Thingstad TF, Gasol JM. (2012). Bacterioplankton groups involved in the uptake of phosphate and dissolved organic phosphorus in a mesocosm experiment with P-starved Mediterranean waters. Environ Microbiol 14: 2334–2347. PubMed
Semeniuk A, Sohlenkamp C, Duda K, Hölzl G. (2014). A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J Biol Chem 289: 10104–10114. PubMed PMC
Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U. (2004). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18: 617–628. PubMed
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G et al. (2015). Structure and function of the global ocean microbiome. Science 348: 1–10. PubMed
Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM et al. (2013). Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA 110: 11463–11468. PubMed PMC
Tanaka T, Zohary T, Krom MD, Law CS, Pitta P, Psarra S et al. (2007). Microbial community structure and function in the Levantine Basin of the eastern Mediterranean. Deep Sea Res Part I Oceanogr Res Pap 54: 1721–1743.
Thingstad TF, Rassoulzadegan F. (1999). Conceptual models for the biogeochemical role of the photic zone microbial food web, with particular reference to the Mediterranean Sea. Prog Oceanogr 44: 271–286.
Thingstad TF, Øvreås L, Egge JK, Løvdal T, Heldal M. (2005). Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecol Lett 8: 675–682.
Thingstad TFR, Mantoura RFC. (2005). Titrating excess nitrogen content of phosphorus-deficient eastern Mediterranean surface water using alkaline phosphatase activity as a bio-indicator. Limnol Oceanogr Methods 3: 94–100.
Tjellström H, Andersson MX, Larsson KE, Sandelius AS. (2008). Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ 31: 1388–1398. PubMed
Umena Y, Kawakami K, Shen J-R, Kamiya N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55–60. PubMed
Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblízek M et al. (2009). Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 69–72. PubMed
Van Mooy BAS, Fredricks HF. (2010). Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition. Geochim Cosmochim Acta 74: 6499–6516.
Van Mooy BAS, Moutin T, Duhamel S, Rimmelin P, Van Wambeke F. (2008). Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean. Biogeosciences 5: 133–139.
Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. (2006). Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc Natl Acad Sci USA 103: 8607–8612. PubMed PMC
Villanueva L, Bale N, Hopmans EC, Schouten S, Damsté JSS. (2014). Diversity and distribution of a key sulpholipid biosynthetic gene in marine microbial assemblages. Environ Microbiol 16: 774–787. PubMed
Wagner-Döbler I, Biebl H. (2006). Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60: 255–280. PubMed
Wu J. (2000). Phosphate depletion in the Western North Atlantic Ocean. Science 289: 759–762. PubMed
Zavaleta-Pastor M, Sohlenkamp C, Gao J-L, Guan Z, Zaheer R, Finan TM et al. (2010). Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci USA 107: 302–307. PubMed PMC
Zubkov M V, Mary I, Woodward EMS, Warwick PE, Fuchs BM, Scanlan DJ et al. (2007). Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environ Microbiol 9: 2079–89. PubMed