Influence of temperature, pH and simulated biological solutions on swelling and structural properties of biomineralized (CaCO3) PVP-CMC hydrogel
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26566470
PubMed Central
PMC4636533
DOI
10.1007/s40204-015-0043-1
PII: 43
Knihovny.cz E-zdroje
- Klíčová slova
- Biomineralization, Equilibrium swelling ratio, Simulated biological solutions, Stimulus, Swelling,
- Publikační typ
- časopisecké články MeSH
ABSTRACT: Biomaterials having stimuli response are interesting in the biomedical field. This paper reports about swelling response and internalstructural of biomineralized (CaCO3) polyvinylpyrrolidone (PVP) carboxymethylcellulose (CMC) hydrogel having various thicknesses (0.1-0.4 mm). Samples were tested in aqueous solution using temperature ranges from 10 to 40 °C; pH varies from 4 to 9, time 60 min. In addition, an experiment was conducted in the presence of simulated biological solutions (SBS): glucose (GS), physiological fluid (PS) and urea (US) at temperature 37 °C and pH 7.5 for 180 min. It is noticed that the maximum swelling ratio reached in 30-40 °C at pH 7 in aqueous solution. Among biological fluids, the swelling ratio shows: US > PS > GS at temperature 37 °C, pH 7.5, time 150 min. The equilibrium swelling ratio of the test sample in SBS and their non-reformative apparent structure confirm that biomineralized (CaCO3) PVP-CMC hydrogel can be acclaimed for medical application like bone tissue engineering.
Zobrazit více v PubMed
Ceylan D, Ozmen MM, Okay O. Swelling-Deswelling Kinetics of Ionic Poly (acrylamide) Hydrogels and Cryogels. J Appl Polym Sci. 2006;99:319–325. doi: 10.1002/app.22023. DOI
Chang C, Duan B, Cai J, Zhang L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Poly J. 2010;46:92–100. doi: 10.1016/j.eurpolymj.2009.04.033. DOI
Chunyu C, Meng H, Zhou J, Zhang L. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules. 2011;44:1642–1648. doi: 10.1021/ma102801f. DOI
De SK, Aluru NR, Johnson B, Crone WC, Beebe D, Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst. 2002;11(5):544–555. doi: 10.1109/JMEMS.2002.803281. DOI
Dixon A (2015) Normal sugar glucose levels in a man. http://www.livestrong.com/article/296203-normal-sugar-glucose-levels-in-a-man/. Accessed 4 Sep 2015
Fathi M, Entezami AA, Pashaei-Asl R. Swelling/deswelling, thermal, and rheological behavior of PVA-g-NIPAAm nanohydrogels prepared by a facile free-radical polymerization method. J Polym Res. 2013;20:125. doi: 10.1007/s10965-013-0125-5. DOI
Feng-ju Z, Xin-guo Y, Yu Z, Kun-kun G, Ming-jun W, Wen-feng W. Crystallization of calcium carbonate in hydrogels in presence of meso-tetrakis (4-hydroxylphenyl) porphyrin. J Cent South Univ. 2012;19:1802–1807. doi: 10.1007/s11771-012-1211-2. DOI
Ganji F, Farahani SV, Farahani EV. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19(5):375–398.
Giridhar RS, Akanksha SP. Swelling behavior of calcium-ions crosslinked bipolymeric sodium alginate-lignosulphonic acid blends. Int J Poly Mater. 2011;60:1123–1129. doi: 10.1080/00914037.2011.553855. DOI
Gupta VN, Shivakumar HG. Investigation of swelling behavior and mechanical properties of a ph-sensitive superporous hydrogel composite. J Pharma Res. 2012;11(2):481–493. PubMed PMC
Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int J Poly Mater Poly Biomater. 2012;62:411–420. doi: 10.1080/00914037.2012.719141. DOI
Jun JMV, Altoe MVP, Shaul A, Zuckermann RN. Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization. Chem Commun. 2015 PubMed
Kaith BS, Jindal R, Mittal H, Kumar K. Temperature, pH and electric stimulus responsive hydrogels from Gum ghatti and polyacrylamide-synthesis, characterization and swelling studies. Der Chem Sinica. 2010;1(2):44–54.
Kamal A. Estimation of blood urea (BUN) and Serum creatinine level in patients of renal disorder. Indian J Fundam Appl Life Sci. 2014;4(4):199–202.
Karadag E, Uzum OB, Saraydin D, Guven O. Dynamic swelling behavior of-radiation induced polyelectrolyte poly(AAm-co-CA) hydrogels in urea solutions. Int J Pharma. 2005;301:102–111. doi: 10.1016/j.ijpharm.2005.05.026. PubMed DOI
Kim SY, Park JS. Biomineralized hyaluronic acid/poly (vinylphosphonic acid) hydrogel for bone tissue regeneration. J Appl Polym Sci. 2014
Kim A, Mujumdar SK, Siegel RA. Swelling properties of hydrogels containing phenylboronic acids. Chemosensors. 2014;2:1–12. doi: 10.3390/chemosensors2010001. DOI
Kundakci S, Karadağ E, Üzüm OB. Investigation of swelling/sorption characteristics of highly swollen AAm/AMPS hydrogels and semi IPNs with PEG as biopotential sorbent. J Encap Adsorp Sci. 2011;1:7–22.
Ma Y, Feng Q, Bourrat X. A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system. Mater Sci Eng, C. 2013;33:2413–2420. doi: 10.1016/j.msec.2013.02.006. PubMed DOI
Mano JF, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4:999–1030. doi: 10.1098/rsif.2007.0220. PubMed DOI PMC
Nesrinne S, Djamel A (2013) Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem. doi:10.1016/j.arabjc.2013.11.027
Nindiyasari F, et al. Effect of hydrogel matrices on calcite crystal growth morphology, aggregate formation, and co-orientation in biomimetic experiments and biomineralization environments. Cryst Growth Des. 2015
Rauch MW, Dressler M, Scheel H, Opdenbosch DV, Zollfrank C (2012) Mineralization of calcium carbonates in cellulose gel membranes. Eur J Inorg Chem 2012:5192–5198
Rodkate N, Rutnakornpituk B, Wichai U, Ross G, Rutnakornpituk M. Smart carboxymethylchitosan hydrogels that have thermo- and pH-responsive properties. J Appl Polym Sci. 2015
Roy SG, De P. Swelling properties of amino acid containing cross-linked polymeric organogels and their respective polyelectrolytic hydrogels with pH and salt responsive property. Polymer. 2014;55:5425–5434. doi: 10.1016/j.polymer.2014.08.072. DOI
Roy N, Saha N, Kitano T, Saha P. Novel hydrogels of PVP–CMC and their swelling effect on viscoelastic properties. J Appl Polym Sci. 2010;117:1703–1710.
Roy N, Saha N, Kitano T, Saha P. Biodegradation of PVP–CMC hydrogel film: a useful food packaging material. Carbohydr Polym. 2012;89:346–353. doi: 10.1016/j.carbpol.2012.03.008. PubMed DOI
Sadeghi M, Hosseinzadeh H. Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g-poly(AMPS)H. Turk J Chem. 2010;34:739–752.
Sadeghi M, Koutchakzadeh G. Swelling kinetics study of hydrolyzed carboxymethylcellulose-poly (sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt-sensitivity properties. J Sci I A U (JSIAU) 2007;17(64):19–26.
Saha P, Saha N, Roy N (2010) Hydrogel wound covering. Patent no: 302405, 2010, Czech Republic
Saha N, Saarai A, Roy N, Kitano T, Saha P. Polymeric biomaterial based hydrogels for biomedical applications. J Biomater Nanobiotechnol. 2011;2:85–90. doi: 10.4236/jbnb.2011.21011. DOI
Saha N, Shah R, Vyroubal R, Kitano T, Saha P (2013) Morphology, absorptivity and viscoelastic properties of mineralized PVP–CMC hydrogel, novel trends in rheology. V Book Series: AIP Conference Proceedings 1526, pp 292–300. ISSN: 0094-243X, ISBN: 978-073541151-7
Saha N, Vyroubal R, Shah R, Kitano T, Saha P (2013) Effect of strain on viscoelastic behavior of fresh, swelled and mineralized PVP–CMC hydrogel, novel trends in rheology. V Book Series: AIP conference proceedings, 1526, pp 301–309. ISSN: 0094-243X, ISBN: 978-073541151-7
Shah R, Saha N, Kitano T, Saha P (2014) Preparation of CaCO3-based biomineralized polyvinylpyrrolidone–carboxymethylcellulose hydrogels and their viscoelastic behavior. doi:10.1002/APP.40237
Shah R, Saha N, Kitano T, Saha P. Influence of strain on dynamic viscoelastic properties of swelled (H2O) and biomineralized (CaCO3) PVP–CMC hydrogels. Appl Rheol. 2015;25:33979.
Shah R, Saha N, Zuckermann RN, Saha P (2015) Stimuli responsive and biomineralized scaffolds: an implant for bone-tissue engineering. SPE-ANTEC 2015, conference proceedings Florida, USA. http://legacy.4spe.org/conferences/antec2015/titles.html
Shah R, Saha N, Kitano T, Saha P (2015) Mineralized polymer composites as biogenic bone substitute material. PPS-30, AIP conference proceedings 1664, 070012. doi:10.1063/1.4918447. ISBN: 978-0-7354-1309-2
Thavornyutikarn B, Chantarapanich N, Sitthiseripratip Thouas GA, Chen Q. Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater. 2014;3:61–102. doi: 10.1007/s40204-014-0026-7. PubMed DOI PMC
Tomić SL, Micić MM, Dobić SN, Filipovic JM, Suljovrujic EH. Smart poly (2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem. 2010;79:643–649. doi: 10.1016/j.radphyschem.2009.11.015. DOI
Tyliszczak B. PAA/PVA matrix for biomedical application. Czasopismo Techniczne Chemia. 2011;108:219–223.
Zhao Y, Kang K, Tan T. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly (aspartic acid) and poly (acrylic acid) Polymer. 2006;47:7702–7710. doi: 10.1016/j.polymer.2006.08.056. DOI
Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8:607–626. doi: 10.1586/erd.11.27. PubMed DOI PMC