On the decline of biodiversity due to area loss

. 2015 Nov 17 ; 6 () : 8837. [epub] 20151117

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26575347

Predictions of how different facets of biodiversity decline with habitat loss are broadly needed, yet challenging. Here we provide theory and a global empirical evaluation to address this challenge. We show that extinction estimates based on endemics-area and backward species-area relationships are complementary, and the crucial difference comprises the geometry of area loss. Across three taxa on four continents, the relative loss of species, and of phylogenetic and functional diversity, is highest when habitable area disappears inward from the edge of a region, lower when it disappears from the centre outwards, and lowest when area is lost at random. In inward destruction, species loss is almost proportional to area loss, although the decline in phylogenetic and functional diversity is less severe. These trends are explained by the geometry of species ranges and the shape of phylogenetic and functional trees, which may allow baseline predictions of biodiversity decline for underexplored taxa.

Zobrazit více v PubMed

Jetz W., Wilcove D. S. & Dobson A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007). PubMed PMC

Butchart S. H. M. et al.. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010). PubMed

Pereira H. M. et al.. Scenarios for Global Biodiversity in the 21st century. Science 330, 1496–1501 (2010). PubMed

Jetz W., McPherson J. M. & Guralnick R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012). PubMed

Barnosky A. D. et al.. Has the Earth's sixth mass extinction already arrived? Nature 471, 51–57 (2011). PubMed

Biton R. et al.. The rediscovered Hula painted frog is a living fossil. Nat. Commun 4, 1959 (2013). PubMed

Costello M. J., May R. M. & Stork N. E. Can we name Earth's species before they go extinct? Science 339, 413–416 (2013). PubMed

Pimm S. L. & Askins R. A. Forest losses predict bird extinctions in eastern North America. Proc. Natl. Acad. Sci 92, 9343–9347 (1995). PubMed PMC

Brook B. W., Sodhi N. S. & Ng P. K. L. Catastrophic extinctions follow deforestation in Singapore. Nature 424, 420–426 (2003). PubMed

Thomas C. D. et al.. Extinction risk from climate change. Nature 427, 145–148 (2004). PubMed

Malcolm J. R., Liu C., Neilson R. P., Hansen L. & Hannah L. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006). PubMed

He F. & Hubbell S. P. Species-area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011). PubMed

Pan X. Fundamental equations for species-area theory. Sci. Rep 3, 1334 (2013). PubMed PMC

Pereira H. M., Borda-de-Água L. & Martins I. S. Geometry and scale in species-area relationships. Nature 482, E3–E4 (2012). PubMed

He F. & Hubbell S. Estimating extinction from species--area relationships: why the numbers do not add up. Ecology 94, 1905–1912 (2013). PubMed

Matias M. G. et al.. Estimates of species extinctions from species–area relationships strongly depend on ecological context. Ecography 37, 431–442 (2014).

Rybicki J. & Hanski I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013). PubMed

Kinzig A. P. & Harte J. Implications of endemics-area relationship for estimates of species extinctions. Ecology 81, 3305–3311 (2000).

Ney-Nifle M. & Mangel M. Habitat loss and changes in the species-area relationship. Conserv. Biol. 14, 893–898 (2000).

Ulrich W. & Buszko J. Habitat reduction and patterns of species loss. Basic Appl. Ecol. 5, 231–240 (2004).

Ramage B. S., Marshalek E. C., Kitzes J. & Potts M. D. Conserving tropical biodiversity via strategic spatiotemporal harvest planning. J. Appl. Ecol. 50, 1301–1310 (2013).

Pimm S. L. et al.. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014). PubMed

Jetz W. et al.. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014). PubMed

Faith D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

Flynn D. F. B., Mirotchnick N., Jain M., Palmer M. I. & Naeem S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011). PubMed

Storch D., Keil P. & Jetz W. Universal species-area and endemics-area relationships at continental scales. Nature 488, 78–81 (2012). PubMed

Axelsen J. B., Roll U., Stone L. & Solow A. Species–area relationships always overestimate extinction rates from habitat loss: comment. Ecology 94, 761–763 (2013). PubMed

Allen A. P. & White E. P. Effects of range size on species-area relationships. Evol. Ecol. Res 5, 493–499 (2003).

Šizling A. L., Storch D. & Keil P. Rapoport's rule, species tolerances, and the latitudinal diversity gradient: geometric considerations. Ecology 90, 3575–3586 (2009). PubMed

Cadotte M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013). PubMed PMC

Grytnes J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).

Storch D., Marquet P. A. & Brown J. H. Scaling Biodiversity Cambridge Univ. (2007).

Lande R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993). PubMed

Cardillo M. et al.. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005). PubMed

Ferraz G. et al.. Rates of species loss from Amazonian forest fragments. Proc. Natl Acad. Sci. USA 100, 14069–14073 (2003). PubMed PMC

Laurance W. F. & Balmford A. Land use: a global map for road building. Nature 495, 308–309 (2013). PubMed

Wetzel F. T., Beissmann H., Penn D. J. & Jetz W. Vulnerability of terrestrial island vertebrates to projected sea-level rise. Glob. Change Biol. 19, 2058–2070 (2013). PubMed

Kallimanis A. S., Kunin W. E., Halley J. M. & Sgardelis S. P. Metapopulation extinction risk under spatially autocorrelated disturbance. Conserv. Biol. 19, 534–546 (2005).

Pereira H. M. & Daily G. C. Modelling biodiversity dynamics in countryside landscapes. Ecology 87, 1877–1885 (2006). PubMed

Wearn O. R., Reuman D. C. & Ewers R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012). PubMed

Pe'er G. et al.. Toward better application of minimum area requirements in conservation planning. Biol. Conserv. 170, 92–102 (2014).

Morlon H. et al.. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14, 141–149 (2011). PubMed PMC

Helmus M. R. & Ives A. R. Phylogenetic diversity–area curves. Ecology 93, S31–S43 (2012).

Maire E., Grenouillet G., Brosse S. & Villéger S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr 24, 728–740 (2015).

Mouchet M. et al.. Towards a consensus for calculating dendrogram-based functional diversity indices. Oikos 117, 794–800 (2008).

Pavoine S., Vallet J., Dufour A.-B., Gachet S. & Daniel H. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).

He F. & Legendre P. Species diversity patterns derived from species-area models. Ecology 83, 1185–1198 (2002).

Harte J., Smith A. B. & Storch D. Biodiversity scales from plots to biomes with a universal species-area curve. Ecol. Lett. 12, 789–797 (2009). PubMed

Sizling A. L., Kunin W. E., Sizlingová E., Reif J. & Storch D. Between geometry and biology: the problem of universality of the species-area relationship. Am. Nat. 178, 602–611 (2011). PubMed

Schipper J. et al.. The status of the World's land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008). PubMed

Buckley L. B. & Jetz W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. USA 105, 17836–17841 (2008). PubMed PMC

Belmaker J. & Jetz W. Cross-scale variation in species richness–environment associations. Glob. Ecol. Biogeogr 20, 464–474 (2011).

Jetz W., Thomas G. H., Joy J. B., Hartmann K. & Mooers A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). PubMed

Kuhn T. S., Mooers A. Ø. & Thomas G. H. A simple polytomy resolver for dated phylogenies: Resolving polytomies under a birth-death model. Methods Ecol. Evol 2, 427–436 (2011).

Isaac N. J. B., Redding D. W., Meredith H. M. & Safi K. Phylogenetically-informed priorities for amphibian conservation. PLoS ONE 7, e43912 (2012). PubMed PMC

Wilman H. J. et al.. EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027 (2014).

Petchey O. L. & Gaston K. J. Dendrograms and measuring functional diversity. Oikos 116, 1422–1426 (2007).

Legendre P. & Legendre L. Numerical Ecology Elsevier (2012).

Mérigot B., Durbec J.-P. & Gaertner J.-C. On goodness-of-fit measure for dendrogram-based analyses. Ecology 91, 1850–1859 (2010). PubMed

Pybus O. G. & Harvey P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc. Biol. Sci 267, 2267–2272 (2000). PubMed PMC

Davies T. J. & Buckley L. B. Exploring the phylogenetic history of mammal species richness. Glob. Ecol. Biogeogr 21, 1096–1105 (2012).

Kraft N. J. B. et al.. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...