Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/K00882X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
26577595
PubMed Central
PMC4685845
DOI
10.1098/rsif.2015.0721
PII: rsif.2015.0721
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, extreme events, food security, winter wheat,
- MeSH
- aklimatizace * MeSH
- klimatické změny * MeSH
- lidé MeSH
- pěstování plodin * MeSH
- pšenice růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions.
Zobrazit více v PubMed
FAO. 2009. How to feed the world in 2050. Rome, Italy: FAO.
Porter JR, et al. 2014. Food security and food production systems. In Climate change 2014: impacts, adaptation, and vulnerability. Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Field CB, et al.), pp. 485–533. Cambridge, UK: Cambridge University Press.
Rahmstorf S, Coumou D. 2011. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17 905–17 909. (10.1073/pnas.1101766108) PubMed DOI PMC
Gourdji SM, Sibley AM, Lobell DB. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8, 024041 (10.1088/1748-9326/8/2/024041) DOI
Liu C, Allan RP. 2013. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 8, 034002 (10.1088/1748-9326/8/3/034002) DOI
Tingley MP, Huybers P. 2013. Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature 496, 201–205. (10.1038/nature11969) PubMed DOI
Huntingford C, Jones PD, Livina VN, Lenton TM, Cox PM. 2013. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330. (10.1038/nature12310) PubMed DOI
Myers SS, et al. 2014. Increasing CO2 threatens human nutrition. Nature 510, 139–142. (10.1038/nature13179) PubMed DOI PMC
Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N. 2014. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291. (10.1038/nclimate2153) DOI
Asseng S, et al. 2013. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832. (10.1038/nclimate1916) DOI
Hyman G, Hodson D, Jones P. 2013. Spatial analysis to support geographic targeting of genotypes to environments. Front. Physiol. 4, 40 (10.3389/fphys.2013.00040) PubMed DOI PMC
Leff B, Ramankutty N, Foley JA. 2004. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 18, GB1009 (10.1029/2003GB002108) DOI
FAOSTAT. 2014. Food and agricultural commodities production/countries by commodity. See http://faostat3.fao.org/browse/rankings/countries_by_commodity/E (cited 25 October 2014).
Monfreda C, Ramankutty N, Foley JA. 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (10.1029/2007GB002947) DOI
Trnka M, Rötter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE, Žalud Z, Semenov MA. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4, 637–643. (10.1038/nclimate2242) DOI
Taylor KE, Stouffer RJ, Meehl GA. 2012. An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Soc. 93, 485–498. (10.1175/BAMS-D-11-00094.1) DOI
Lobell DB, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science 333, 616–620. (10.1126/science.1204531) PubMed DOI
Gourdji SM, Mathews KL, Reynolds M, Crossa J, Lobell DB. 2013. An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc. R. Soc. B 280, 20122190 (10.1098/rspb.2012.2190) PubMed DOI PMC
Semenov MA, Shewry PR. 2011. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 1, 66 (10.1038/srep00066) PubMed DOI PMC
Moore FC, Lobell DB. 2015. The fingerprint of climate trends on European crop yields. Proc. Natl Acad. Sci. USA 112, 2670–2675. (10.1073/pnas.1409606112) PubMed DOI PMC
Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Žalud Z, Možný M. 2009. Effect of drought on yield variability of key crops in Czech Republic. Agric. For. Meteorol. 149, 431–442. (10.1016/j.agrformet.2008.09.004) DOI
Olesen JE, et al. 2011. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 34, 96–112. (10.1016/j.eja.2010.11.003) DOI
Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science 339, 940–943. (10.1126/science.1229881) PubMed DOI
Monaghan JM, Daccache A, Vickers LH, Hess TM, Weatherhead EK, Grove IG, Knox JW. 2013. More ‘crop per drop’: constraints and opportunities for precision irrigation in European agriculture. J. Sci. Food Agric. 93, 977–980. (10.1002/jsfa.6051) PubMed DOI
Semenov MA, Donatelli M, Stratonovitch P, Chatzidaki E, Baruth B. 2010. ELPIS: a dataset of local-scale daily climate scenarios for Europe. Clim. Res. 44, 3–15. (10.3354/cr00865) DOI
Semenov MA, Stratonovitch P. 2010. The use of multi-model ensembles from global climate models for impact assessments of climate change. Clim. Res. 41, 1–14. (10.3354/cr00836) DOI
Olesen JE, et al. 2012. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit. Contam. A 29, 1527–1542. (10.1080/19440049.2012.712060) PubMed DOI
Kruijt B, Witte J-PM, Jacobs CMJ, Kroon T. 2008. Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. J. Hydrol. 349, 257–267. (10.1016/j.jhydrol.2007.10.052) DOI
FAOSTAT. 2012. See http://faostat.fao.org/site/567/default.aspx#ancor (cited 20 September 2014).
EUROSTAT. 2014. See http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search (cited 20 September 2014).
Trnka M, et al. 2011. Agroclimatic conditions in Europe under climate change. Glob. Change Biol. 17, 2298–2318. (10.1111/j.1365-2486.2011.02396.x) DOI
Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper no. 56 Rome, Italy: FAO.
Trnka M, et al. 2010. Simple snow cover model for agrometeorological applications. Agric. For. Meteorol. 150, 1115–1127. (10.1016/j.agrformet.2010.04.012) DOI
Hlavinka P, et al. 2011. Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric. Water Manage. 98, 1249–1261. (10.1016/j.agwat.2011.03.011) DOI
Adverse weather conditions for UK wheat production under climate change