Adverse weather conditions for UK wheat production under climate change

. 2020 Mar 15 ; 282-283 () : 107862.

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32184532

Winter wheat is an important crop in the UK, suited to the typical weather conditions in the current climate. In a changing climate the increased frequency and severity of adverse weather events, which are often localised, are considered a major threat to wheat production. In the present study we assessed a range of adverse weather conditions, which can significantly affect yield, under current and future climates based on adverse weather indices. We analysed changes in the frequency, magnitude and spatial patterns of 10 adverse weather indices, at 25 sites across the UK, using climate scenarios from the CMIP5 ensemble of global climate models (GCMs) and two greenhouse gas emissions (RCP4.5 and RCP8.5). The future UK climate is expected to remain favourable for wheat production, with most adverse weather indicators reducing in magnitude by the mid-21st century. Hotter and drier summers would improve sowing and harvesting conditions and reduce the risk of lodging. The probability of late frosts and heat stress during reproductive and grain filling periods would likely remain small in 2050. Wetter winter and spring could cause issues with waterlogging. The severity of drought stress during reproduction would generally be lower in 2050, however localised differences suggest it is important to examine drought at a small spatial scale. Prolonged water stress does not increase considerably in the UK, as may be expected in other parts of Europe. Climate projections based on the CMIP5 ensemble reveal considerable uncertainty in the magnitude of adverse weather conditions including waterlogging, drought and water stress. The variation in adverse weather conditions due to GCMs was generally greater than between emissions scenarios. Accordingly, CMIP5 ensembles should be used in the assessment of adverse weather conditions for crop production to indicate the full range of possible impacts, which a limited number of GCMs may not provide.

Zobrazit více v PubMed

Al-Issawi M., Rihan H.Z., El-Sarkassy N., Fuller M.P. Frost hardiness expression and characterisation in wheat at ear emergence. J. Agron. Crop Sci. 2013;199:66–74.

Alghabari F., Lukac M., Jones H.E., Gooding M.J. Effect of rht alleles on the tolerance of wheat grain set to high temperature and drought stress during booting and anthesis. J. Agron. Crop Sci. 2014;200:36–45.

Allen R.G., Luis S.P., RAES D., Smith M. Crop Evapotranspiration (guidelines for computing crop water requirements); Rome, Italy: 1998. FAO Irrigation and Drainage Paper No. 56.

Bartholomeus R.P., Witte J.P.M., van Bodegom P.M., van Dam J.C., Aerts R. Critical soil conditions for oxygen stress to plant roots: substituting the Feddes-function by a process-based model. J. Hydrol. 2008;360:147–165.

Bergjord A.K., Bonesmo H., Skjelvåg A.O. Modelling the course of frost tolerance in winter wheat: I. Model development. Eur. J. Agron. 2008;28:321–330.

Berry P.M., Sterling M., Baker C.J., Spink J., Sparkes D.L. A calibrated model of wheat lodging compared with field measurements. Agric. For. Meteorol. 2003;119:167–180.

DEFRA, 2018. Farming statistics provisional crop areas, yields and livestock populations at June 2018 - United Kingdom.

Deryng D., Conway D., Ramankutty N., Price J., Warren R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 2014;9

Dong B., Zheng X., Liu H., Able J.A., Yang H., Zhao H., Zhang M., Qiao Y., Wang Y., Liu M. Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Front. Plant Sci. 2017;8:1–14. PubMed PMC

Durre I., Menne M.J., Gleason B.E., Houston T.G., Vose R.S. Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteorol. Climatol. 2010;49:1615–1633.

EDINA, 2018. EDINA agcensus [WWW document]. agric. census data. URLhttp://agcensus.edina.ac.uk/index.html (accessed 1.30.19).

Ewert F., Rodriguez D., Jamieson P., Semenov M.A., Mitchell R.A.C., Goudriaan J., Porter J.R., Kimball B.A., Pinter P.J., Manderscheid R., Weigel H.J., Fangmeier A., Fereres E., Villalobos F. Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agric. Ecosyst. Environ. 2002;93:249–266.

FAO, 2009. How to feed the world in 2050. 10.1111/j.1728-4457.2009.00312.x.

FAOSTAT, 2018. FAOSTAT crops [WWW document]. URLhttp://www.fao.org/faostat/en/#data/QC (accessed 11.22.18).

Feng S., Hu Q., Qian W. Quality control of daily meteorological data in China, 1951-2000: a new dataset. Int. J. Climatol. 2004;24:853–870.

Fones H., Gurr S. The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet. Biol. 2015;79:3–7. PubMed PMC

Fuller M.P., Fuller A.M., Kaniouras S., Christophers J., Fredericks T. The freezing characteristics of wheat at ear emergence. Eur. J. Agron. 2007;26:435–441.

Gitau M.W., Mehan S., Guo T. Weather generator effectiveness in capturing climate extremes. Environ. Process. 2018;5:153–165.

Gobin A. Weather related risks in Belgian arable agriculture. Agric. Syst. 2018;159:225–236.

Gourdji S.M., Sibley A.M., Lobell D.B. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 2013;8:1–10.

Griggs D., Stafford-Smith M., Gaffney O., Rockström J., Öhman M.C., Shyamsundar P., Steffen W., Glaser G., Kanie N., Noble I. Sustainable development goals for people and planet. Nature. 2013;495:305–307. PubMed

Gusta L.V., Fowler D.B. Dehardening and rehardening of spring-collected winter wheats and a winter rye. Can. J. Plant Sci. 1976;56:775–779.

Hadi S.J., Tombul M. Comparison of spatial interpolation methods of precipitation and temperature using multiple integration periods. J. Indian Soc. Remote Sens. 2018;46:1187–1199.

Hlavinka P., Trnka M., Balek J., Semerádová D., Hayes M., Svoboda M., Eitzinger J., Možný M., Fischer M., Hunt E., Žalud Z. Development and evaluation of the soilclim model for water balance and soil climate estimates. Agric. Water Manag. 2011;98:1249–1261.

IPCC . Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge University Press; Cambridge, United Kingdom and New York, NY, USA: 2014. Climate change 2013: the physical science basis.

IPCC . A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK, and New York, NY, USA: 2012. Managing the risks of extreme events and disasters to advance climate change adaptation.

Jamieson P.D., Semenov M.A., Brooking I.R., Francis G.S. Sirius: a mechanistic model of wheat response to environmental variation. Eur. J. Agron. 1998;8:161–179.

Kendon M., Marsh T., Parry S. The 2010-2012 drought in England and Wales. Weather. 2013;68:88–95.

Kovats R.S., Valentini R., Bouwer L.M., Georgopoulou E., Jacob D., Martin E., Rounsevell M., Soussana J.-F. Europe. In: Barros V.R., Field C.B., Dokken D.J., Mastrandrea M.D., Mach K.J., Bilir T.E., editors. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge University Press; Cambridge, United Kingdom and New York, NY, USA: 2014. pp. 1267–1326.

Lawless C., Semenov M.A., Jamieson P.D. A wheat canopy model linking leaf area and phenology. Eur. J. Agron. 2005;22:19–32.

Lesk C., Rowhani P., Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84–87. PubMed

Li Q., Chen Y., Shen Y., Li X., Xu J. Spatial and temporal trends of climate change in Xinjiang, China. J. Geogr. Sci. 2011;21:1007–1018.

Lobell D.B., Sibley A., Ivan Ortiz-Monasterio J. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012;2:186–189.

Lowe, J.A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., Howard, T., Kaye, N., Kendon, E., Krijnen, J., Maisey, P., McDonald, R., McInnes, R., McSweeney, C., Mitchell, J.F., Murphy, J., Palmer, M., Roberts, C., Rostron, J., Sexton, D., Thornton, H., Tinker, J., Tucker, S., Yamazaki, K., Belcher, S., 2018. UKCP18 Science Overview report.

Lu G.Y., Wong D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008;34:1044–1055.

Ma J., Li R., Wang H., Li D., Wang X., Zhang Y., Zhen W., Duan H., Yan G., Li Y. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front. Plant Sci. 2017;8:1–13. PubMed PMC

Malik A.I., Colmer T.D., Lambers H., Setter T.L., Schortemeyer M. Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol. 2002;153:225–236.

Martre P., Jamieson P.D., Semenov M.A., Zyskowski R.F., Porter J.R., Triboi E. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur. J. Agron. 2006;25:138–154.

Met Office, 2019. UK climate - Synoptic and climate stations [WWW document]. URLhttps://www.metoffice.gov.uk/public/weather/climate-network.

Mitchell R.A.C., Mitchell V.J., Driscoll S.P., Franklin J., Lawlor D.W. Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell Environ. 1993;16:521–529.

Nasehzadeh M., Ellis R.H. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation. Ann. Bot. 2017;120:479–493. PubMed PMC

Olesen J.E., Børgesen C.D., Elsgaard L., Palosuo T., Rötter R.P., Skjelvåg A.O., Peltonen-Sainio P., Börjesson T., Trnka M., Ewert F., Siebert S., Brisson N., Eitzinger J., van Asselt E.D., Oberforster M., van der Fels-Klerx H.J. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012;29:1527–1542. PubMed

Olesen J.E., Trnka M., Kersebaum K.C., Skjelvåg A.O., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., Micale F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011;34:96–112.

Parry S., Marsh T., Kendon M. 2012: from drought to floods in England and Wales. Weather. 2013;68:268–274.

Petr J. Elsevier; Amsterdam: 1991. Weather and Yield.

Pietravalle S., Shaw M.W., Parker S.R., van den Bosch F. Modeling of relationships between weather and Septoria tritici epidemics on winter wheat: a critical approach. Phytopathology. 2007;93:1329–1339. PubMed

Porter J.R., Gawith M. Temperatures and the growth and development of wheat a review. Eur. J. Agron. 1999;10:23–36.

Posthumus H., Morris J., Hess T.M., Neville D., Phillips E., Baylis A. Impacts of the summer 2007 floods on agriculture in England. J. Flood Risk Manag. 2009;2:182–189.

Powell J.P., Reinhard S. Measuring the effects of extreme weather events on yields. Weather Clim. Extrem. 2015;12:69–79.

Rahmstorf S., Coumou D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. 2011;108:17905–17909. PubMed PMC

Reyer C.P.O., Leuzinger S., Rammig A., Wolf A., Bartholomeus R.P., Bonfante A., de Lorenzi F., Dury M., Gloning P., Abou Jaoudé R., Klein T., Kuster T.M., Martins M., Niedrist G., Riccardi M., Wohlfahrt G., de Angelis P., de Dato G., François L., Menzel A., Pereira M. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability. Glob. Change Biol. 2013;19:75–89. PubMed PMC

Reynolds M.P., Hays D., Chapman S. Climate Change and Crop Production. CABI; Wallingford: 2010. Breeding for adaptation to heat and drought stress; pp. 71–91.

Richter G.M., Semenov M.A. Modelling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agric. Syst. 2005;84:77–97.

Rietveld M.R. A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agric. Meteorol. 1978;19:243–252.

Russell G., Wilson G.W. European Commission; Luxembourg. Luxembourg: 1994. An Agro-Pedo-Climatological Knowledge-Base of Wheat in Europe, Joint Research Centre.

Savill G.P., Michalski A., Powers S.J., Wan Y., Tosi P., Buchner P., Hawkesford M.J. Temperature and nitrogen supply interact to determine protein distribution gradients in the wheat grain endosperm. J. Exp. Bot. 2018;69:3117–3126. PubMed PMC

Semenov M. Simulation of extreme weather events by a stochastic weather generator. Clim. Res. 2008;35:203–212.

Semenov M.A. Impacts of climate change on wheat in England and Wales. J. R. Soc. Interface. 2009;6:343–350. PubMed PMC

Semenov M.A. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric. For. Meteorol. 2007;144:127–138.

Semenov M.A., Donatelli M., Stratonovitch P., Chatzidaki E., Baruth B. ELPIS: a dataset of local-scale daily climate scenarios for Europe. Clim. Res. 2010;44:3–15.

Semenov M.A., Martre P., Jamieson P.D. Quantifying effects of simple wheat traits on yield in water-limited environments using a modelling approach. Agric. For. Meteorol. 2009;149:1095–1104.

Semenov M.A., Pilkington-bennett S., Calanca P. Validation of ELPIS 1980 − 2010 baseline scenarios using the observed European climate assessment data set. Clim. Res. 2013;57:1–9.

Semenov M.A., Shewry P.R. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci. Rep. 2011;1:1–6. PubMed PMC

Semenov M.A., Stratonovitch P. Adapting wheat ideotypes for climate change: accounting for uncertainties in CMIP5 climate projections. Clim. Res. 2015;65:123–139.

Semenov M.A., Stratonovitch P., Alghabari F., Gooding M.J. Adapting wheat in Europe for climate change. J. Cereal Sci. 2014;59:245–256. PubMed PMC

Senapati N., Brown H.E., Semenov M.A. Raising genetic yield potential in high productive countries: designing wheat ideotypes under climate change. Agric. For. Meteorol. 2019;271:33–45. PubMed PMC

Senapati N., Stratonovitch P., Paul M.J., Semenov M.A. Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. J. Exp. Bot. 2019;70:2549–2560. PubMed PMC

Seneviratne S., Nicholls N., Easterling D., Goodess C., Kanae S., Kossin J., Luo Y., Marengo J., McInnes K., Rahimi M., Reichstein M., Sorteberg A., Vera C., Zhang X. Changes in climate extremes and their impacts on the natural physical environment. In: Field C.B., Barros V., Stocker T.F., Qin D., Dokken D.J., Ebi K.L., editors. Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; Cambridge, UK, and New York, NY, USA: 2012. pp. 109–230.

Stratonovitch P., Semenov M.A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. 2015;66:3599–3609. PubMed PMC

Trnka M., Eitzinger J., Dubrovský M., Semerádová D., Štěpánek P., Hlavinka P., Balek J., Skalák P., Farda A., Formayer H., Žalud Z., Change C., Paper A. Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. J. Agric. Sci. 2010;148:639–656.

Trnka M., Hlavinka P., Semenov M.A. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. J. R. Soc. Interface. 2015;12 PubMed PMC

Trnka M., Kocmánková E., Balek J., Eitzinger J., Ruget F., Formayer H., Hlavinka P., Schaumberger A., Horáková V., Možný M. Simple snow cover model for agrometeorological applications. Agric. For. Meteorol. 2010;150:1115–1127.

Trnka M., Olesen J.E., Kersebaum K.C., Skjelvåg A.O., Eitzinger J., Seguin B., Peltonen-Sainio P., Rötter R., Iglesias A., Orlandini S., Dubrovský M., Hlavinka P., Balek J., Eckersten H., Cloppet E., Calanca P., Gobin A., Vučetić V., Nejedlik P., Kumar S., Lalic B., Mestre A., Rossi F., Kozyra J., Alexandrov V., Semerádová D., Žalud Z. Agroclimatic conditions in Europe under climate change. Glob. Chang. Biol. 2011;17:2298–2318.

Trnka M., Rötter R.P., Ruiz-Ramos M., Kersebaum K.C., Olesen J.E., Žalud Z., Semenov M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change. 2014;4:637–643.

van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J.-F., Masui T., Meinshausen M., Nakicenovic N., Smith S.J., Rose S.K. The representative concentration pathways: an overview. Clim. Change. 2011;109:5–31.

Vanuytrecht E., Raes D., Willems P. Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium. Reg. Environ. Change. 2016;16:659–672.

Vanuytrecht E., Raes D., Willems P., Semenov M.A. Comparing climate change impacts on cereals based on CMIP3 and EU-ensembles climate scenarios. Agric. For. Meteorol. 2014;195–196:12–23.

Weightman R., Foulkes J., Snape J., Fish L., Alava J., Greenwell P. Using Cereal Science and Technology for the Benefit of Consumers; 2005. Physiological Traits Influencing Hardness and Vitreosity in Wheat Grain; pp. 220–224.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...