Targeting Neuroinflammation and Cognitive Decline: First-in-Class Dual Butyrylcholinesterase and p38α Mitogen-Activated Protein Kinase Inhibitors
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
U01 AG066722
NIA NIH HHS - United States
PubMed
40779804
PubMed Central
PMC12406203
DOI
10.1021/acs.jmedchem.5c00933
Knihovny.cz E-resources
- MeSH
- Alzheimer Disease drug therapy MeSH
- Butyrylcholinesterase * chemistry metabolism MeSH
- Cholinesterase Inhibitors * pharmacology chemistry therapeutic use MeSH
- Protein Kinase Inhibitors * pharmacology chemistry therapeutic use MeSH
- Cognitive Dysfunction * drug therapy MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Lipopolysaccharides MeSH
- Mitogen-Activated Protein Kinase 14 * antagonists & inhibitors metabolism MeSH
- Models, Molecular MeSH
- Mice MeSH
- Neuroinflammatory Diseases * drug therapy MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Butyrylcholinesterase * MeSH
- Cholinesterase Inhibitors * MeSH
- Protein Kinase Inhibitors * MeSH
- Lipopolysaccharides MeSH
- Mitogen-Activated Protein Kinase 14 * MeSH
The currently approved drugs for the treatment of Alzheimer's disease (AD) fail to address its interconnected pathological processes. Inhibition of butyrylcholinesterase (BChE) and p38α mitogen-activated protein kinase (p38α MAPK) offers an innovative dual approach to mitigate two major drivers of neurodegeneration in AD: cholinergic deficit and neuroinflammation. Using structure-based drug design and a library of known p38α MAPK inhibitors, we developed first-in-class, selective dual BChE/p38α MAPK inhibitors with balanced activity against both targets. The X-ray crystal structures of the two most promising molecules bound to both enzymes were solved. Those ligands effectively reduced the production of proinflammatory markers in vitro and ex vivo in phytohemagglutinin/lipopolysaccharide neuroinflammation models. Remarkably, these compounds also significantly improved cognition in scopolamine- and lipopolysaccharide-induced models of cognitive dysfunction in mice. Because our dual-acting inhibitors target both the symptoms and the underlying neuropathology, they offer an innovative and comprehensive strategy to combat AD.
See more in PubMed
Wilson D. M., Cookson M. R., Van Den Bosch L., Zetterberg H., Holtzman D. M., Dewachter I.. Hallmarks of Neurodegenerative Diseases. Cell. 2023;186(4):693–714. doi: 10.1016/j.cell.2022.12.032. PubMed DOI
Zhang J., Zhang Y., Wang J., Xia Y., Zhang J., Chen L.. Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Sig Transduct Target Ther. 2024;9(1):1–35. doi: 10.1038/s41392-024-01911-3. PubMed DOI PMC
Proschak E., Stark H., Merk D.. Polypharmacology by Design: A Medicinal Chemist’s Perspective on Multitargeting Compounds. J. Med. Chem. 2019;62(2):420–444. doi: 10.1021/acs.jmedchem.8b00760. PubMed DOI
Beezer J., Al Hatrushi M., Husband A., Kurdi A., Forsyth P.. Polypharmacy Definition and Prevalence in Heart Failure: A Systematic Review. Heart Fail Rev. 2022;27(2):465–492. doi: 10.1007/s10741-021-10135-4. PubMed DOI PMC
Ibrahim M. M., Gabr M. T.. Multitarget Therapeutic Strategies for Alzheimer’s Disease. Neural Regen Res. 2019;14(3):437–440. doi: 10.4103/1673-5374.245463. PubMed DOI PMC
Bullock R., Touchon J., Bergman H., Gambina G., He Y., Rapatz G., Nagel J., Lane R.. Rivastigmine and Donepezil Treatment in Moderate to Moderately-Severe Alzheimer’s Disease over a 2-Year Period. Curr. Med. Res. Opin. 2005;21(8):1317–1327. doi: 10.1185/030079905X56565. PubMed DOI
Wilcock G., Howe I., Coles H., Lilienfeld S., Truyen L., Zhu Y., Bullock R., Kershaw P.. GAL-GBR-2 Study Group. A Long-Term Comparison of Galantamine and Donepezil in the Treatment of Alzheimer’s Disease. Drugs Aging. 2003;20(10):777–789. doi: 10.2165/00002512-200320100-00006. PubMed DOI
DeKosky S. T., Ikonomovic M. D., Styren S. D., Beckett L., Wisniewski S., Bennett D. A., Cochran E. J., Kordower J. H., Mufson E. J.. Upregulation of Choline Acetyltransferase Activity in Hippocampus and Frontal Cortex of Elderly Subjects with Mild Cognitive Impairment. Ann. Neurol. 2002;51(2):145–155. doi: 10.1002/ana.10069. PubMed DOI
Hardy J. A., Higgins G. A.. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science. 1992;256(5054):184–185. doi: 10.1126/science.1566067. PubMed DOI
Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., Binder L. I.. Abnormal Phosphorylation of the Microtubule-Associated Protein Tau (Tau) in Alzheimer Cytoskeletal Pathology. Proc. Natl. Acad. Sci. U. S. A. 1986;83(13):4913–4917. doi: 10.1073/pnas.83.13.4913. PubMed DOI PMC
Dunn B., Stein P., Cavazzoni P.. Approval of Aducanumab for Alzheimer DiseaseThe FDA’s Perspective. JAMA Internal Medicine. 2021;181(10):1276–1278. doi: 10.1001/jamainternmed.2021.4607. PubMed DOI
Reardon S.. FDA Approves Alzheimer’s Drug Lecanemab amid Safety Concerns. Nature. 2023;613(7943):227–228. doi: 10.1038/d41586-023-00030-3. PubMed DOI
Mintun M. A., Lo A. C., Evans C. D., Wessels A. M., Ardayfio P. A., Andersen S. W., Shcherbinin S., Sparks J., Sims J. R., Brys M., Apostolova L. G., Salloway S. P., Skovronsky D. M.. Donanemab in Early Alzheimer’s Disease. New England J. Med. 2021;384(18):1691–1704. doi: 10.1056/NEJMoa2100708. PubMed DOI
Avgerinos K. I., Manolopoulos A., Ferrucci L., Kapogiannis D.. Critical Assessment of Anti-Amyloid-β Monoclonal Antibodies Effects in Alzheimer’s Disease: A Systematic Review and Meta-Analysis Highlighting Target Engagement and Clinical Meaningfulness. Sci. Rep. 2024;14(1):25741. doi: 10.1038/s41598-024-75204-8. PubMed DOI PMC
Mullard A.. Anti-Amyloid Failures Stack up as Alzheimer Antibody Flops. Nat. Rev. Drug Discovery. 2019;18(5):327–327. doi: 10.1038/d41573-019-00064-1. PubMed DOI
Mullard A.. Anti-Tau Antibody Stumbles in Phase II Alzheimer Trial. Nat. Rev. Drug Discovery. 2024;23(12):883–883. doi: 10.1038/d41573-024-00180-7. PubMed DOI
Dyer O.. Aduhelm: Biogen Abandons Alzheimer’s Drug after Controversial Approval Left It Unfunded by Medicare. BMJ. 2024;384:q281. doi: 10.1136/bmj.q281. PubMed DOI
Zhang Y., Chen H., Li R., Sterling K., Song W.. Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Sig Transduct Target Ther. 2023;8(1):1–26. doi: 10.1038/s41392-023-01484-7. PubMed DOI PMC
Congdon E. E., Ji C., Tetlow A. M., Jiang Y., Sigurdsson E. M.. Tau-Targeting Therapies for Alzheimer Disease: Current Status and Future Directions. Nat. Rev. Neurol. 2023;19(12):715–736. doi: 10.1038/s41582-023-00883-2. PubMed DOI PMC
Maramai S., Benchekroun M., Gabr M. T., Yahiaoui S.. Multitarget Therapeutic Strategies for Alzheimer’s Disease: Review on Emerging Target Combinations. BioMed. Research International. 2020;2020(1):5120230. doi: 10.1155/2020/5120230. PubMed DOI PMC
Knez D., Diez-Iriepa D., Chioua M., Gottinger A., Denic M., Chantegreil F., Nachon F., Brazzolotto X., Skrzypczak-Wiercioch A., Meden A., Pišlar A., Kos J., Žakelj S., Stojan J., Sałat K., Serrano J., Fernández A. P., Sánchez-García A., Martínez-Murillo R., Binda C., López-Muñoz F., Gobec S., Marco-Contelles J.. 8-Hydroxyquinolylnitrones as Multifunctional Ligands for the Therapy of Neurodegenerative Diseases. Acta Pharm. Sin B. 2023;13(5):2152–2175. doi: 10.1016/j.apsb.2023.01.013. PubMed DOI PMC
Jiang X.-Y., Chen T.-K., Zhou J.-T., He S.-Y., Yang H.-Y., Chen Y., Qu W., Feng F., Sun H.-P.. Dual GSK-3β/AChE Inhibitors as a New Strategy for Multitargeting Anti-Alzheimer’s Disease Drug Discovery. ACS Med. Chem. Lett. 2018;9(3):171–176. doi: 10.1021/acsmedchemlett.7b00463. PubMed DOI PMC
Yu Y.-F., Huang Y.-D., Zhang C., Wu X.-N., Zhou Q., Wu D., Wu Y., Luo H.-B.. Discovery of Novel Pyrazolopyrimidinone Derivatives as Phosphodiesterase 9A Inhibitors Capable of Inhibiting Butyrylcholinesterase for Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2017;8(11):2522–2534. doi: 10.1021/acschemneuro.7b00268. PubMed DOI
Gabr M. T., Abdel-Raziq M. S.. Design and Synthesis of Donepezil Analogues as Dual AChE and BACE-1 Inhibitors. Bioorg Chem. 2018;80:245–252. doi: 10.1016/j.bioorg.2018.06.031. PubMed DOI
Giovannini M. G., Scali C., Prosperi C., Bellucci A., Vannucchi M. G., Rosi S., Pepeu G., Casamenti F.. β-Amyloid-Induced Inflammation and Cholinergic Hypofunction in the Rat Brain in Vivo: Involvement of the p38MAPK Pathway. Neurobiology of Disease. 2002;11(2):257–274. doi: 10.1006/nbdi.2002.0538. PubMed DOI
Lučiu̅naitė A., McManus R. M., Jankunec M., Rácz I., Dansokho C., Dalgėdienė I., Schwartz S., Brosseron F., Heneka M. T.. Soluble Aβ Oligomers and Protofibrils Induce NLRP3 Inflammasome Activation in Microglia. J. Neurochem. 2020;155(6):650–661. doi: 10.1111/jnc.14945. PubMed DOI
Stefanoska K., Gajwani M., Tan A. R. P., Ahel H. I., Asih P. R., Volkerling A., Poljak A., Ittner A.. Alzheimer’s Disease: Ablating Single Master Site Abolishes Tau Hyperphosphorylation. Science . Advances. 2022;8(27):eabl8809. doi: 10.1126/sciadv.abl8809. PubMed DOI PMC
Schnöder L., Hao W., Qin Y., Liu S., Tomic I., Liu X., Fassbender K., Liu Y.. Deficiency of Neuronal P38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1*. J. Biol. Chem. 2016;291(5):2067–2079. doi: 10.1074/jbc.M115.695916. PubMed DOI PMC
Pentz R., Iulita M. F., Ducatenzeiler A., Bennett D. A., Cuello A. C.. The Human Brain NGF Metabolic Pathway Is Impaired in the Pre-Clinical and Clinical Continuum of Alzheime’s Disease. Mol. Psychiatry. 2021;26(10):6023–6037. doi: 10.1038/s41380-020-0797-2. PubMed DOI PMC
Giacobini E., Cuello A. C., Fisher A.. Reimagining Cholinergic Therapy for Alzheimer’s Disease. Brain. 2022;145(7):2250–2275. doi: 10.1093/brain/awac096. PubMed DOI
Giacobini E.. Cholinesterase Inhibitors: New Roles and Therapeutic Alternatives. Pharmacol. Res. 2004;50(4):433–440. doi: 10.1016/j.phrs.2003.11.017. PubMed DOI
Greig N. H., Utsuki T., Ingram D. K., Wang Y., Pepeu G., Scali C., Yu Q.-S., Mamczarz J., Holloway H. W., Giordano T., Chen D., Furukawa K., Sambamurti K., Brossi A., Lahiri D. K.. Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer β-Amyloid Peptide in Rodent. Proc. Natl. Acad. Sci. U. S. A. 2005;102(47):17213–17218. doi: 10.1073/pnas.0508575102. PubMed DOI PMC
Ferjančič Benetik S., Knez D., Obreza A., Košak U., Gobec S.. Dual Inhibition of Butyrylcholinesterase and P38α Mitogen-Activated Protein Kinase: A New Approach for the Treatment of Alzheimer’s Disease. Pharmacol Ther. 2024;264:108748. doi: 10.1016/j.pharmthera.2024.108748. PubMed DOI
Ramsay R. R., Popovic-Nikolic M. R., Nikolic K., Uliassi E., Bolognesi M. L.. A Perspective on Multi-Target Drug Discovery and Design for Complex Diseases. Clin Transl Med. 2018;7(1):3. doi: 10.1186/s40169-017-0181-2. PubMed DOI PMC
Machado T. R., Machado T. R., Pascutti P. G.. The P38 MAPK Inhibitors and Their Role in Inflammatory Diseases. ChemistrySelect. 2021;6(23):5729–5742. doi: 10.1002/slct.202100406. DOI
Xing S., Li Q., Xiong B., Chen Y., Feng F., Liu W., Sun H.. Structure and Therapeutic Uses of Butyrylcholinesterase: Application in Detoxification, Alzheimer’s Disease, and Fat Metabolism. Medicinal Research Reviews. 2021;41(2):858–901. doi: 10.1002/med.21745. PubMed DOI
Ozturk T., Mignot J., Gattazzo F., Gervais M., Relaix F., Rouard H., Didier N.. Dual Inhibition of P38 MAPK and JNK Pathways Preserves Stemness Markers and Alleviates Premature Activation of Muscle Stem Cells during Isolation. Stem Cell Res. Ther. 2024;15:179. doi: 10.1186/s13287-024-03795-0. PubMed DOI PMC
Bachegowda L., Morrone K., Winski S. L., Mantzaris I., Bartenstein M., Ramachandra N., Giricz O., Sukrithan V., Nwankwo G., Shahnaz S., Bhagat T., Bhattacharyya S., Assal A., Shastri A., Gordon-Mitchell S., Pellagatti A., Boultwood J., Schinke C., Yu Y., Guha C., Rizzi J., Garrus J., Brown S., Wollenberg L., Hogeland G., Wright D., Munson M., Rodriguez M., Gross S., Chantry D., Zou Y., Platanias L., Burgess L. E., Pradhan K., Steidl U., Verma A.. Pexmetinib: A Novel Dual Inhibitor of Tie-2 and P38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Res. 2016;76(16):4841–4849. doi: 10.1158/0008-5472.CAN-15-3062. PubMed DOI PMC
Heider F., Ansideri F., Tesch R., Pantsar T., Haun U., Döring E., Kudolo M., Poso A., Albrecht W., Laufer S. A., Koch P.. Pyridinylimidazoles as Dual Glycogen Synthase Kinase 3β/P38α Mitogen-Activated Protein Kinase Inhibitors. Eur. J. Med. Chem. 2019;175:309–329. doi: 10.1016/j.ejmech.2019.04.035. PubMed DOI
Albertini C., Petralla S., Massenzio F., Monti B., Rizzardi N., Bergamini C., Uliassi E., Borges F., Chavarria D., Fricker G., Goettert M., Kronenberger T., Gehringer M., Laufer S., Bolognesi M. L.. Targeting Lewy Body Dementia with Neflamapimod-Rasagiline Hybrids. Arch Pharm. (Weinheim) 2024;357(6):e2300525. doi: 10.1002/ardp.202300525. PubMed DOI
Ellman G. L., Courtney K. D., Andres V., Feather-Stone R. M.. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Zegzouti H., Zdanovskaia M., Hsiao K., Goueli S. A.. ADP-Glo: A Bioluminescent and Homogeneous ADP Monitoring Assay for Kinases. Assay Drug Dev Technol. 2009;7(6):560–572. doi: 10.1089/adt.2009.0222. PubMed DOI
Wright D., Winski S. L., Anderson D., Lee P., Munson M., Winkler J.. ARRY-797, a Potent and Selective Inhibitor of P38 Map Kinase, Inhibits LPS-Induced IL-6 and In Vivo Growth of RPMI-8226 Human Multiple Myeloma Cells. Blood. 2006;108(11):3478. doi: 10.1182/blood.V108.11.3478.3478. DOI
Noelting E.. Ueber Bildung von Indazolen Aus Nitrirten Orthomethylirten Aminen. Berichte der deutschen chemischen Gesellschaft. 1904;37(3):2556–2597. doi: 10.1002/cber.19040370311. DOI
Onder S., Schopfer L. M., Jiang W., Tacal O., Lockridge O.. Butyrylcholinesterase in SH-SY5Y Human Neuroblastoma Cells. Neurotoxicology. 2022;90:1–9. doi: 10.1016/j.neuro.2022.02.006. PubMed DOI PMC
Fabian M. A., Biggs W. H., Treiber D. K., Atteridge C. E., Azimioara M. D., Benedetti M. G., Carter T. A., Ciceri P., Edeen P. T., Floyd M., Ford J. M., Galvin M., Gerlach J. L., Grotzfeld R. M., Herrgard S., Insko D. E., Insko M. A., Lai A. G., Lélias J.-M., Mehta S. A., Milanov Z. V., Velasco A. M., Wodicka L. M., Patel H. K., Zarrinkar P. P., Lockhart D. J.. A Small Molecule–Kinase Interaction Map for Clinical Kinase Inhibitors. Nat. Biotechnol. 2005;23(3):329–336. doi: 10.1038/nbt1068. PubMed DOI
Simard J. R., Getlik M., Grütter C., Pawar V., Wulfert S., Rabiller M., Rauh D.. Development of a Fluorescent-Tagged Kinase Assay System for the Detection and Characterization of Allosteric Kinase Inhibitors. J. Am. Chem. Soc. 2009;131(37):13286–13296. doi: 10.1021/ja902010p. PubMed DOI
Koeberle S. C., Romir J., Fischer S., Koeberle A., Schattel V., Albrecht W., Grütter C., Werz O., Rauh D., Stehle T., Laufer S. A.. Skepinone-L Is a Selective P38 Mitogen-Activated Protein Kinase Inhibitor. Nat. Chem. Biol. 2012;8(2):141–143. doi: 10.1038/nchembio.761. PubMed DOI
Jiang Y., Alam J. J., Gomperts S. N., Maruff P., Lemstra A. W., Germann U. A., Stavrides P. H., Darji S., Malampati S., Peddy J., Bleiwas C., Pawlik M., Pensalfini A., Yang D.-S., Subbanna S., Basavarajappa B. S., Smiley J. F., Gardner A., Blackburn K., Chu H.-M., Prins N. D., Teunissen C. E., Harrison J. E., Scheltens P., Nixon R. A.. Preclinical and Randomized Clinical Evaluation of the P38α Kinase Inhibitor Neflamapimod for Basal Forebrain Cholinergic Degeneration. Nat. Commun. 2022;13(1):5308. doi: 10.1038/s41467-022-32944-3. PubMed DOI PMC
Astolfi A., Iraci N., Manfroni G., Barreca M. L., Cecchetti V.. A Comprehensive Structural Overview of P38α MAPK in Complex with Type I Inhibitors. ChemMedChem. 2015;10(6):957–969. doi: 10.1002/cmdc.201500030. PubMed DOI
Röhm S., Berger B.-T., Schröder M., Chaikuad A., Winkel R., Hekking K. F. W., Benningshof J. J. C., Müller G., Tesch R., Kudolo M., Forster M., Laufer S., Knapp S.. Fast Iterative Synthetic Approach toward Identification of Novel Highly Selective P38 MAP Kinase Inhibitors. J. Med. Chem. 2019;62(23):10757–10782. doi: 10.1021/acs.jmedchem.9b01227. PubMed DOI
Avdeef A., Bendels S., Di L. i., Faller B., Kansy M., Sugano K., Yamauchi Y.. PAMPACritical Factors for Better Predictions of Absorption. J. Pharm. Sci. 2007;96(11):2893–2909. doi: 10.1002/jps.21068. PubMed DOI
Di L., Kerns E. H., Fan K., McConnell O. J., Carter G. T.. High Throughput Artificial Membrane Permeability Assay for Blood-Brain Barrier. Eur. J. Med. Chem. 2003;38(3):223–232. doi: 10.1016/S0223-5234(03)00012-6. PubMed DOI
Da Mesquita S., Fu Z., Kipnis J.. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron. 2018;100(2):375–388. doi: 10.1016/j.neuron.2018.09.022. PubMed DOI PMC
Rustenhoven J., Kipnis J.. Brain Borders at the Central Stage of Neuroimmunology. Nature. 2022;612(7940):417–429. doi: 10.1038/s41586-022-05474-7. PubMed DOI PMC
Mills G. B., Lee J. W., Cheung R. K., Gelfand E. W.. Characterization of the Requirements for Human T Cell Mitogenesis by Using Suboptimal Concentrations of Phytohemagglutinin. J. Immunol. 1985;135(5):3087–3093. doi: 10.4049/jimmunol.135.5.3087. PubMed DOI
Kuo Y. C., Weng S. C., Chou C. J., Chang T. T., Tsai W. J.. Activation and Proliferation Signals in Primary Human T Lymphocytes Inhibited by Ergosterol Peroxide Isolated from Cordyceps Cicadae. Br. J. Pharmacol. 2003;140(5):895–906. doi: 10.1038/sj.bjp.0705500. PubMed DOI PMC
Lin Z., Huang Y., Jiang H., Zhang D., Yang Y., Geng X., Li B.. Functional Differences and Similarities in Activated Peripheral Blood Mononuclear Cells by Lipopolysaccharide or Phytohemagglutinin Stimulation between Human and Cynomolgus Monkeys. Ann. Transl Med. 2021;9(3):257. doi: 10.21037/atm-20-4548. PubMed DOI PMC
Jarnicki A. G., Conroy H., Brereton C., Donnelly G., Toomey D., Walsh K., Sweeney C., Leavy O., Fletcher J., Lavelle E. C., Dunne P., Mills K. H. G.. Attenuating Regulatory T Cell Induction by TLR Agonists through Inhibition of P38 MAPK Signaling in Dendritic Cells Enhances Their Efficacy as Vaccine Adjuvants and Cancer Immunotherapeutics. J. Immunol. 2008;180(6):3797–3806. doi: 10.4049/jimmunol.180.6.3797. PubMed DOI
Marriott J. B., Clarke I. A., Dalgleish A. G.. Inhibition of P38 MAP Kinase during Cellular Activation Results in IFN-γ-Dependent Augmentation of IL-12 Production by Human Monocytes/Macrophages. Clin. Exp. Immunol. 2001;125(1):64–70. doi: 10.1046/j.1365-2249.2001.01574.x. PubMed DOI PMC
Hampel H., Mesulam M.-M., Cuello A. C., Khachaturian A. S., Vergallo A., Farlow M. R., Snyder P. J., Giacobini E., Khachaturian Z. S.. Revisiting the Cholinergic Hypothesis in Alzheimer’s Disease: Emerging Evidence from Translational and Clinical Research. J. Prev Alzheimers Dis. 2019;6(1):2–15. doi: 10.14283/jpad.2018.43. PubMed DOI PMC
Skrzypczak-Wiercioch A., Sałat K.. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules. 2022;27(17):5481. doi: 10.3390/molecules27175481. PubMed DOI PMC
Ou G., Jiang X., Deng Y., Dong J., Xu W., Zhang X., Zhang J.. Inhibition or Deletion of Hydroxylases-Prolyl-4-Hydroxyases 3 Alleviates Lipopolysaccharide-Induced Neuroinflammation and Neurobehavioral Deficiency. Neuroscience. 2022;481:47–59. doi: 10.1016/j.neuroscience.2021.11.025. PubMed DOI
Košak U., Brus B., Knez D., Sink R., Žakelj S., Trontelj J., Pišlar A., Šlenc J., Gobec M., Živin M., Tratnjek L., Perse M., Salat K., Podkowa A., Filipek B., Nachon F., Brazzolotto X., Wieckowska A., Malawska B., Gobec S.. Development of an In-Vivo Active Reversible Butyrylcholinesterase Inhibitor. Sci. Rep. 2016;6:39495. doi: 10.1038/srep39495. PubMed DOI PMC
Cheon S. Y., Koo B.-N., Kim S. Y., Kam E. H., Nam J., Kim E. J.. Scopolamine Promotes Neuroinflammation and Delirium-like Neuropsychiatric Disorder in Mice. Sci. Rep. 2021;11(1):8376. doi: 10.1038/s41598-021-87790-y. PubMed DOI PMC
Kim J., Lee H., Park S. K., Park J.-H., Jeong H.-R., Lee S., Lee H., Seol E., Hoe H.-S.. Donepezil Regulates LPS and Aβ-Stimulated Neuroinflammation through MAPK/NLRP3 Inflammasome/STAT3 Signaling. International Journal of Molecular Sciences. 2021;22(19):10637. doi: 10.3390/ijms221910637. PubMed DOI PMC
Tyagi E., Agrawal R., Nath C., Shukla R.. Effect of Anti-Dementia Drugs on LPS Induced Neuroinflammation in Mice. Life Sciences. 2007;80(21):1977–1983. doi: 10.1016/j.lfs.2007.02.039. PubMed DOI
Bonaz B., Sinniger V., Pellissier S.. Anti-Inflammatory Properties of the Vagus Nerve: Potential Therapeutic Implications of Vagus Nerve Stimulation. Journal of Physiology. 2016;594(20):5781–5790. doi: 10.1113/JP271539. PubMed DOI PMC
Liu Y., Li W., Ma X., He J., Lin Y., Lin D.. Rivastigmine Regulates the HIF-1α/VEGF Signaling Pathway to Induce Angiogenesis and Improves the Survival of Random Flaps in Rats. Front Pharmacol. 2022;12:818907. doi: 10.3389/fphar.2021.818907. PubMed DOI PMC
Sałat K., Podkowa A., Mogilski S., Zaręba P., Kulig K., Sałat R., Malikowska N., Filipek B.. The Effect of GABA Transporter 1 (GAT1) Inhibitor, Tiagabine, on Scopolamine-Induced Memory Impairments in Mice. Pharmacol Rep. 2015;67(6):1155–1162. doi: 10.1016/j.pharep.2015.04.018. PubMed DOI
Cohen S. J., Stackman R. W.. Assessing Rodent Hippocampal Involvement in the Novel Object Recognition Task. A Review. Behav Brain Res. 2015;285:105–117. doi: 10.1016/j.bbr.2014.08.002. PubMed DOI PMC
Rajagopal L., Massey B. W., Huang M., Oyamada Y., Meltzer H. Y.. The Novel Object Recognition Test in Rodents in Relation to Cognitive Impairment in Schizophrenia. Curr. Pharm. Des. 2014;20(31):5104–5114. doi: 10.2174/1381612819666131216114240. PubMed DOI
Morris R. G. M., Garrud P., Rawlins J. N. P., O’Keefe J.. Place Navigation Impaired in Rats with Hippocampal Lesions. Nature. 1982;297(5868):681–683. doi: 10.1038/297681a0. PubMed DOI
Zhao J., Bi W., Xiao S., Lan X., Cheng X., Zhang J., Lu D., Wei W., Wang Y., Li H., Fu Y., Zhu L.. Neuroinflammation Induced by Lipopolysaccharide Causes Cognitive Impairment in Mice. Sci. Rep. 2019;9(1):5790. doi: 10.1038/s41598-019-42286-8. PubMed DOI PMC
Bolívar S., Santana R., Ayala P., Landaeta R., Boza P., Humeres C., Vivar R., Muñoz C., Pardo V., Fernandez S., Anfossi R., Diaz-Araya G.. Lipopolysaccharide Activates Toll-Like Receptor 4 and Prevents Cardiac Fibroblast-to-Myofibroblast Differentiation. Cardiovasc Toxicol. 2017;17(4):458–470. doi: 10.1007/s12012-017-9404-4. PubMed DOI
Zaitsu M., Hamasaki Y., Matsuo M., Miyazaki M., Hayasaki R., Muro E., Yamamoto S., Kobayashi I., Ichimaru T., Miyazaki S.. Induction of Cytosolic Phospholipase A2 and Prostaglandin H2 Synthase-2 by Lipopolysaccharide in Human Polymorphonuclear Leukocytes. Eur. J. Haematol. 1999;63(2):94–102. doi: 10.1111/j.1600-0609.1999.tb01122.x. PubMed DOI
Chang C.-C., Sia K.-C., Chang J.-F., Lin C.-M., Yang C.-M., Lee I.-T., Vo T. T. T., Huang K.-Y., Lin W.-N.. Participation of Lipopolysaccharide in Hyperplasic Adipose Expansion: Involvement of NADPH Oxidase/ROS/P42/P44 MAPK-Dependent Cyclooxygenase-2. J. Cell Mol. Med. 2022;26(14):3850–3861. doi: 10.1111/jcmm.17419. PubMed DOI PMC
Huang L., Duan S., Shao H., Zhang A., Chen S., Zhang P., Wang N., Wang W., Wu Y., Wang J., Liu H., Yao W., Zhang Q., Feng F.. NLRP3 Deletion Inhibits Inflammation-Driven Mouse Lung Tumorigenesis Induced by Benzo(a)Pyrene and Lipopolysaccharide. Respiratory Research. 2019;20(1):20. doi: 10.1186/s12931-019-0983-4. PubMed DOI PMC
Wang M., Liu M., Xu W., Teng Z., Wu X., Gan L., Zhang Y.. Sulforaphane Reduces Lipopolysaccharide-Induced Inflammation and Enhances Myogenic Differentiation of Mouse Embryonic Myoblasts via the Toll-like Receptor 4 and NLRP3 Pathways. Adv. Clin Exp Med. 2023;32(4):457–467. doi: 10.17219/acem/155342. PubMed DOI
Johnston R. C., Yao K., Kaplan Z., Chelliah M., Leswing K., Seekins S., Watts S., Calkins D., Chief Elk J., Jerome S. V., Repasky M. P., Shelley J. C.. Epik: pKa and Protonation State Prediction through Machine Learning. J. Chem. Theory Comput. 2023;19(8):2380–2388. doi: 10.1021/acs.jctc.3c00044. PubMed DOI
Friesner R. A., Murphy R. B., Repasky M. P., Frye L. L., Greenwood J. R., Halgren T. A., Sanschagrin P. C., Mainz D. T.. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006;49(21):6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79(2):926–935. doi: 10.1063/1.445869. DOI
Jorgensen W. L., Maxwell D. S., Tirado-Rives J.. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118(45):11225–11236. doi: 10.1021/ja9621760. DOI
Banks J. L., Beard H. S., Cao Y., Cho A. E., Damm W., Farid R., Felts A. K., Halgren T. A., Mainz D. T., Maple J. R., Murphy R., Philipp D. M., Repasky M. P., Zhang L. Y., Berne B. J., Friesner R. A., Gallicchio E., Levy R. M.. Integrated Modeling Program, Applied Chemical Theory (IMPACT) J. Comput. Chem. 2005;26(16):1752–1780. doi: 10.1002/jcc.20292. PubMed DOI PMC
Nachon F., Nicolet Y., Viguié N., Masson P., Fontecilla-Camps J. C., Lockridge O.. Engineering of a Monomeric and Low-Glycosylated Form of Human Butyrylcholinesterase: Expression, Purification, Characterization and Crystallization. Eur. J. Biochem. 2002;269(2):630–637. doi: 10.1046/j.0014-2956.2001.02692.x. PubMed DOI
Lockridge O., David E., Schopfer L. M., Masson P., Brazzolotto X., Nachon F.. Purification of Recombinant Human Butyrylcholinesterase on Hupresin®. J. Chromatogr. B. 2018;1102–1103:109–115. doi: 10.1016/j.jchromb.2018.10.026. PubMed DOI PMC
Incardona M.-F., Bourenkov G. P., Levik K., Pieritz R. A., Popov A. N., Svensson O.. EDNA: A Framework for Plugin-Based Applications Applied to X-Ray Experiment Online Data Analysis. J. Synchrotron Rad. 2009;16(6):872–879. doi: 10.1107/S0909049509036681. PubMed DOI
Liebschner D., Afonine P. V., Baker M. L., Bunkóczi G., Chen V. B., Croll T. I., Hintze B., Hung L. W., Jain S., McCoy A. J., Moriarty N. W., Oeffner R. D., Poon B. K., Prisant M. G., Read R. J., Richardson J. S., Richardson D. C., Sammito M. D., Sobolev O. V., Stockwell D. H., Terwilliger T. C., Urzhumtsev A. G., Videau L. L., Williams C. J., Adams P. D.. Macromolecular Structure Determination Using X-Rays, Neutrons and Electrons: Recent Developments in Phenix. Acta Crystallogr., D: Struct. Biol. 2019;75(Pt 10):861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Moriarty N. W., Grosse-Kunstleve R. W., Adams P. D.. Electronic Ligand Builder and Optimization Workbench (eLBOW): A Tool for Ligand Coordinate and Restraint Generation. Acta Cryst. D. 2009;65(10):1074–1080. doi: 10.1107/S0907444909029436. PubMed DOI PMC
McCarthy A. A., Barrett R., Beteva A., Caserotto H., Dobias F., Felisaz F., Giraud T., Guijarro M., Janocha R., Khadrouche A., Lentini M., Leonard G. A., Lopez Marrero M., Malbet-Monaco S., McSweeney S., Nurizzo D., Papp G., Rossi C., Sinoir J., Sorez C., Surr J., Svensson O., Zander U., Cipriani F., Theveneau P., Mueller-Dieckmann C.. ID30B–a Versatile Beamline for Macromolecular Crystallography Experiments at the ESRF. J. Synchrotron Rad. 2018;25(4):1249–1260. doi: 10.1107/S1600577518007166. PubMed DOI PMC
Kabsch W.. XDS. Acta Cryst. D. 2010;66(2):125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Vonrhein C., Flensburg C., Keller P., Sharff A., Smart O., Paciorek W., Womack T., Bricogne G.. Data Processing and Analysis with the autoPROC Toolbox. Acta Crystallogr., D: Biol. Crystallogr. 2011;67(Pt 4):293–302. doi: 10.1107/S0907444911007773. PubMed DOI PMC
Roy S. M., Minasov G., Arancio O., Chico L. W., Van Eldik L. J., Anderson W. F., Pelletier J. C., Watterson D. M.. A Selective and Brain Penetrant p38αMAPK Inhibitor Candidate for Neurologic and Neuropsychiatric Disorders That Attenuates Neuroinflammation and Cognitive Dysfunction. J. Med. Chem. 2019;62(11):5298–5311. doi: 10.1021/acs.jmedchem.9b00058. PubMed DOI PMC
Emsley P., Lohkamp B., Scott W. G., Cowtan K.. Features and Development of Coot. Acta Crystallogr., D: Biol. Crystallogr. 2010;66(Pt 4):486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Afonine P. V., Grosse-Kunstleve R. W., Echols N., Headd J. J., Moriarty N. W., Mustyakimov M., Terwilliger T. C., Urzhumtsev A., Zwart P. H., Adams P. D.. Towards Automated Crystallographic Structure Refinement with Phenix.Refine. Acta Crystallogr., D: Biol. Crystallogr. 2012;68(Pt 4):352–367. doi: 10.1107/S0907444912001308. PubMed DOI PMC
Liebschner D., Afonine P. V., Moriarty N. W., Poon B. K., Sobolev O. V., Terwilliger T. C., Adams P. D.. Polder Maps: Improving OMIT Maps by Excluding Bulk Solvent. Acta Crystallogr., D: Struct. Biol. 2017;73(Pt 2):148–157. doi: 10.1107/S2059798316018210. PubMed DOI PMC
Williams C. J., Headd J. J., Moriarty N. W., Prisant M. G., Videau L. L., Deis L. N., Verma V., Keedy D. A., Hintze B. J., Chen V. B., Jain S., Lewis S. M., Arendall W. B., Snoeyink J., Adams P. D., Lovell S. C., Richardson J. S., Richardson D. C.. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018;27(1):293–315. doi: 10.1002/pro.3330. PubMed DOI PMC
Mezeiova E., Janockova J., Andrys R., Soukup O., Kobrlova T., Muckova L., Pejchal J., Simunkova M., Handl J., Micankova P., Capek J., Rousar T., Hrabinova M., Nepovimova E., Marco-Contelles J. L., Valko M., Korabecny J.. 2-Propargylamino-Naphthoquinone Derivatives as Multipotent Agents for the Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2021;211:113112. doi: 10.1016/j.ejmech.2020.113112. PubMed DOI
Ennaceur A., Delacour J.. A New One-Trial Test for Neurobiological Studies of Memory in Rats. 1: Behavioral Data. Behav Brain Res. 1988;31(1):47–59. doi: 10.1016/0166-4328(88)90157-X. PubMed DOI
Lueptow L. M.. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. J. Vis Exp. 2017;126:55718. doi: 10.3791/55718. PubMed DOI PMC
Sałat K., Gawlik K., Witalis J., Pawlica-Gosiewska D., Filipek B., Solnica B., Więckowski K., Malawska B.. Evaluation of Antinociceptive and Antioxidant Properties of 3-[4-(3-Trifluoromethyl-Phenyl)-Piperazin-1-Yl]-Dihydrofuran-2-One in Mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2013;386(6):493–505. doi: 10.1007/s00210-013-0847-2. PubMed DOI PMC