Development and the Effect of Weather and Mineral Fertilization on Grain Yield and Stability of Winter Wheat following Alfalfa-Analysis of Long-Term Field Trial
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RO0418, QK1810010, QK21020155
Ministry of Agriculture
PubMed
36987080
PubMed Central
PMC10052034
DOI
10.3390/plants12061392
PII: plants12061392
Knihovny.cz E-resources
- Keywords
- Medicago sativa L., Triticum aestivum L., legumes, nitrogen, precipitation, response models, temperature, weather and yield variability, yield,
- Publication type
- Journal Article MeSH
Within the framework of a long-term experiment, established in 1955, we evaluated the development and effects of weather and mineral fertilization (Control, NPK1, NPK2, NPK3, NPK4) on the yield and stability of winter wheat following alfalfa. In total, 19 seasons were analysed. The weather changed considerably at the experimental site. Significant increases in minimal, mean, and maximal temperatures were dated to the period 1987-1988, while precipitation remained the same to this day (insignificantly increasing trend by 0.5 mm per annum). Rising temperatures in November, May, and July positively affected wheat grain yield, especially in treatments with higher N doses. No relationship between yield and precipitation was recorded. Highest inter-annual yield variability was recorded in Control and NPK4 treatments. Although minerally fertilized treatments provided slightly higher yields, the difference between Control and NPK treatments was insignificant. According to the linear-plateau response model, the recommended dose of 44 kg ha-1 N corresponds with yield of 7.4 t ha-1, while Control provides an average yield of 6.8 t ha-1. The application of higher doses did not lead to significant grain yield increase. Alfalfa as a preceding crop reduces the need of N fertilization and contributes to sustainable conventional agriculture, however, its share in crop rotations is decreasing both in the Czech Republic and in Europe.
See more in PubMed
Czech Statistical Office Areas under Crops. [(accessed on 6 January 2023)]. Available online: https://www.czso.cz/csu/czso/zem_cr.
Peng Z., Wang L., Xie J., Li L., Coulter J.A., Zhang R., Luo Z., Cai L., Carberry P., Whitbread A. Conservation Tillage Increases Yield and Precipitation Use Efficiency of Wheat on the Semi-Arid Loess Plateau of China. Agric. Water Manag. 2020;231:106024. doi: 10.1016/j.agwat.2020.106024. DOI
Morgounov A., Abugalieva A., Martynov S. Effect of Climate Change and Variety on Long-Term Variation of Grain Yield and Quality in Winter Wheat in Kazakhstan. Cereal Res. Commun. 2014;42:163–172. doi: 10.1556/CRC.2013.0047. DOI
Horvat D., Loncaric Z., Vukadinovic V., Drezner G., Bertic B., Dvojković K. The Influence of Mineral Fertilization on Winter Wheat Yield and Quality. Cereal Res. Commun. 2006;34:429–432. doi: 10.1556/CRC.34.2006.1.107. DOI
Lollato R.P., Mark K.E., Jaenisch B.R. Wheat Grain Yield and Grain Protein Concentration Response to Nitrogen Rate During the 2018–2019 Growing Season in Kansas. Kansas Agric. Exp. Stn. Res. Rep. 2020;6 doi: 10.4148/2378-5977.7974. DOI
Zecevic V., Knezevic D., Boskovic J., Micanovic D., Dozet G. Effect of Nitrogen Fertilization on Winter Wheat Quality. Cereal Res. Commun. 2010;38:243–249. doi: 10.1556/CRC.38.2010.2.10. DOI
Litke L., Gaile Z., Ruža A. Effect of Nitrogen Fertilization on Winter Wheat Yield and Yield Quality. Agron. Res. 2018;16:500–509. doi: 10.15159/AR.18.064. DOI
Leghari S.J., Wahocho N.A., Laghari G.M., Hafeez Laghari A. Role of Nitrogen for Plant Growth and Development: A Review. Adv. Environ. Biol. 2016;10:209–218.
Kronstad W.E. Wheat: Prospects for Global Improvement. Springer; Dordrecht, The Netherlands: 1997. Agricultural Development and Wheat Breeding in the 20th Century; pp. 1–10.
Zhang W.J., Zhang X.Y. A Forecast Analysis on Fertilizers Consumption Worldwide. Environ. Monit. Assess. 2007;133:427–434. doi: 10.1007/s10661-006-9597-7. PubMed DOI
Yu Z., Liu J., Kattel G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data. 2022;14:5179–5194. doi: 10.5194/essd-14-5179-2022. DOI
Cao P., Lu C., Yu Z. Historical Nitrogen Fertilizer Use in Agricultural Ecosystems of the Contiguous United States during 1850-2015: Application Rate, Timing, and Fertilizer Types. Earth Syst. Sci. Data. 2018;10:969–984. doi: 10.5194/essd-10-969-2018. DOI
Jepsen M.R., Kuemmerle T., Müller D., Erb K., Verburg P.H., Haberl H., Vesterager J.P., Andrič M., Antrop M., Austrheim G., et al. Transitions in European Land-Management Regimes between 1800 and 2010. Land Use policy. 2015;49:53–64. doi: 10.1016/j.landusepol.2015.07.003. DOI
Spiertz J.H.J. Sustainable Agriculture. Volume 23. Springer; Dordrecht, The Netherlands: 2009. Nitrogen, Sustainable Agriculture and Food Security: A Review; pp. 635–651.
Sun C., Chen L., Zhai L., Liu H., Wang K., Jiao C., Shen Z. National Assessment of Nitrogen Fertilizers Fate and Related Environmental Impacts of Multiple Pathways in China. J. Clean. Prod. 2020;277:123519. doi: 10.1016/j.jclepro.2020.123519. DOI
Mahvi A.H., Nouri J., Babaei A.A., Nabizadeh R. Agricultural Activities Impact on Groundwater Nitrate Pollution. Int. J. Environ. Sci. Technol. 2005;2:41–47. doi: 10.1007/BF03325856. DOI
Zebarth B.J., Drury C.F., Tremblay N., Cambouris A.N. Opportunities for Improved Fertilizer Nitrogen Management in Production of Arable Crops in Eastern Canada: A Review. Can. J. Soil Sci. 2009;89:113–132. doi: 10.4141/CJSS07102. DOI
Górski J., Dragon K., Kaczmarek P.M.J. Nitrate Pollution in the Warta River (Poland) between 1958 and 2016: Trends and Causes. Environ. Sci. Pollut. Res. 2019;26:2038–2046. doi: 10.1007/s11356-017-9798-3. PubMed DOI PMC
O’Donovan J.T., Turkington T.K., Edney M.J., Clayton G.W., McKenzie R.H., Juskiw P.E., Lafond G.P., Grant C.A., Brandt S., Harker K.N., et al. Seeding Rate, Nitrogen Rate, and Cultivar Effects on Malting Barley Production. Agron. J. 2011;103:709–716. doi: 10.2134/agronj2010.0490. DOI
Zhang M., Wang H., Yi Y., Ding J., Zhu M., Li C., Guo W., Feng C., Zhu X. Effect of Nitrogen Levels and Nitrogen Ratios on Lodging Resistance and Yield Potential of Winter Wheat (Triticum aestivum L.) PLoS ONE. 2017;12:e0187543. doi: 10.1371/journal.pone.0187543. PubMed DOI PMC
Kong L., Xie Y., Hu L., Si J., Wang Z. Excessive Nitrogen Application Dampens Antioxidant Capacity and Grain Filling in Wheat as Revealed by Metabolic and Physiological Analyses. Sci. Rep. 2017;7:43363. doi: 10.1038/srep43363. PubMed DOI PMC
Khan A., Ahmad A., Ali W., Hussain S., Ajayo B.S., Raza M.A., Kamran M., Te X., al Amin N., Ali S., et al. Optimization of Plant Density and Nitrogen Regimes to Mitigate Lodging Risk in Wheat. Agron. J. 2020;112:2535–2551. doi: 10.1002/agj2.20211. DOI
Hochmuth G., Hanlon E., Overman A. Fertilizer Experimentation, Data Analyses, and Interpretation for Developing Fertilization Recommendations—Examples with Vegetable Crop Research. 2017. [(accessed on 6 January 2023)]. Available online: https://edis.ifas.ufl.edu/publication/SS548.
Klikocka H., Cybulska M., Barczak B., Narolski B., Szostak B., Kobiałka A., Nowak A., Wójcik E. The Effect of Sulphur and Nitrogen Fertilization on Grain Yield and Technological Quality of Spring Wheat. Plant Soil Environ. 2016;62:230–236. doi: 10.17221/18/2016-PSE. DOI
Ali S.A., Tedone L., Verdini L., Cazzato E., De Mastro G. Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation. Agronomy. 2019;9:50. doi: 10.3390/agronomy9020050. DOI
Ma G., Liu W., Li S., Zhang P., Wang C., Lu H., Wang L., Xie Y., Ma D., Kang G. Determining the Optimal N Input to Improve Grain Yield and Quality in Winter Wheat with Reduced Apparent N Loss in the North China Plain. Front. Plant Sci. 2019;10:1–12. doi: 10.3389/fpls.2019.00181. PubMed DOI PMC
Brázdil R., Trnka M., Dobrovolný P., Chromá K., Hlavinka P., Žalud Z. Variability of Droughts in the Czech Republic, 1881–2006. Theor. Appl. Climatol. 2009;97:297–315. doi: 10.1007/s00704-008-0065-x. DOI
Zahradníček P., Trnka M., Brázdil R., Možný M., Štěpánek P., Hlavinka P., Žalud Z., Malý A., Semerádová D., Dobrovolný P., et al. The Extreme Drought Episode of August 2011-May 2012 in the Czech Republic. Int. J. Climatol. 2015;35:3335–3352. doi: 10.1002/joc.4211. DOI
Bouabdelli S., Zeroual A., Meddi M., Assani A. Impact of Temperature on Agricultural Drought Occurrence under the Effects of Climate Change. Theor. Appl. Climatol. 2022;148:191–209. doi: 10.1007/s00704-022-03935-7. DOI
Wang Q., Wu J., Lei T., He B., Wu Z., Liu M., Mo X., Geng G., Li X., Zhou H., et al. Temporal-Spatial Characteristics of Severe Drought Events and Their Impact on Agriculture on a Global Scale. Quat. Int. 2014;349:10–21. doi: 10.1016/j.quaint.2014.06.021. DOI
Werndl C. On Defining Climate and Climate Change. Br. J. Philos. Sci. 2016;67:337–364. doi: 10.1093/bjps/axu048. DOI
Grusson Y., Wesström I., Joel A. Impact of Climate Change on Swedish Agriculture: Growing Season Rain Deficit and Irrigation Need. Agric. Water Manag. 2021;251:106858. doi: 10.1016/j.agwat.2021.106858. DOI
Olesen J.E., Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002;16:239–262. doi: 10.1016/S1161-0301(02)00004-7. DOI
Olesen J.E., Trnka M., Kersebaum K.C., Skjelvåg A.O., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., Micale F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011;34:96–112. doi: 10.1016/j.eja.2010.11.003. DOI
Agovino M., Casaccia M., Ciommi M., Ferrara M., Marchesano K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019;105:525–543. doi: 10.1016/j.ecolind.2018.04.064. DOI
Knox J., Hess T., Daccache A., Wheeler T. Climate Change Impacts on Crop Productivity in Africa and South Asia. Environ. Res. Lett. 2012;7:034032. doi: 10.1088/1748-9326/7/3/034032. DOI
Mendelsohn R. The Impact of Climate Change on Agriculture in Asia. J. Integr. Agric. 2014;13:660–665. doi: 10.1016/S2095-3119(13)60701-7. DOI
Garfin G., Jardine A., Merideth R., Black M., LeRoy S. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. Island Press; Washington, DC, USA: 2013. DOI
Thai T.H., Bellingrath-Kimura S.D., Hoffmann C., Barkusky D. Effect of Long-Term Fertiliser Regimes and Weather on Spring Barley Yields in Sandy Soil in North-East Germany. Arch. Agron. Soil Sci. 2020;66:1812–1826. doi: 10.1080/03650340.2019.1697436. DOI
Addy J.W.G., Ellis R.H., Macdonald A.J., Semenov M.A., Mead A. Investigating the Effects of Inter-Annual Weather Variation (1968–2016) on the Functional Response of Cereal Grain Yield to Applied Nitrogen, Using Data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020;284:107898. doi: 10.1016/j.agrformet.2019.107898. PubMed DOI PMC
Hatfield J.L., Dold C. Agroclimatology and Wheat Production: Coping with Climate Change. Front. Plant Sci. 2018;9:224. doi: 10.3389/fpls.2018.00224. PubMed DOI PMC
Macholdt J., Piepho H.P., Honermeier B. Mineral NPK and Manure Fertilisation Affecting the Yield Stability of Winter Wheat: Results from a Long-Term Field Experiment. Eur. J. Agron. 2019;102:14–22. doi: 10.1016/j.eja.2018.10.007. DOI
Macholdt J., Styczen M.E., Macdonald A., Piepho H.P., Honermeier B. Long-Term Analysis from a Cropping System Perspective: Yield Stability, Environmental Adaptability, and Production Risk of Winter Barley. Eur. J. Agron. 2020;117:126056. doi: 10.1016/j.eja.2020.126056. DOI
St. Luce M., Grant C.A., Ziadi N., Zebarth B.J., O’Donovan J.T., Blackshaw R.E., Harker K.N., Johnson E.N., Gan Y., Lafond G.P., et al. Preceding Crops and Nitrogen Fertilization Influence Soil Nitrogen Cycling in No-till Canola and Wheat Cropping Systems. Field Crops Res. 2016;191:20–32. doi: 10.1016/j.fcr.2016.02.014. DOI
Nielsen D.C., Vigil M.F. Wheat Yield and Yield Stability of Eight Dryland Crop Rotations. Agron. J. 2018;110:594–601. doi: 10.2134/agronj2017.07.0407. DOI
Götze P., Rücknagel J., Wensch-Dorendorf M., Märländer B., Christen O. Crop Rotation Effects on Yield, Technological Quality and Yield Stability of Sugar Beet after 45 Trial Years. Eur. J. Agron. 2017;82:50–59. doi: 10.1016/j.eja.2016.10.003. DOI
Sieling K., Stahl C., Winkelmann C., Christen O. Growth and Yield of Winter Wheat in the First 3 Years of a Monoculture under Varying N Fertilization in NW Germany. Eur. J. Agron. 2005;22:71–84. doi: 10.1016/j.eja.2003.12.004. DOI
Plaza-Bonilla D., Nolot J.M., Raffaillac D., Justes E. Innovative Cropping Systems to Reduce N Inputs and Maintain Wheat Yields by Inserting Grain Legumes and Cover Crops in Southwestern France. Eur. J. Agron. 2017;82:331–341. doi: 10.1016/j.eja.2016.05.010. DOI
Ballesta A., Lloveras J. Nitrogen Replacement Value of Alfalfa to Corn and Wheat under Irrigated Mediterranean Conditions. Spanish J. Agric. Res. 2010;8:159. doi: 10.5424/sjar/2010081-1155. DOI
Yost M.A., Pound C.A., Creech J.E., Cardon G.E., Pace M.G., Kitchen B., Nelson M., Russell K. Nitrogen Requirements of First-year Small Grains after Alfalfa. Soil Sci. Soc. Am. J. 2021;85:1698–1709. doi: 10.1002/saj2.20269. DOI
Kebede E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021;5:767998. doi: 10.3389/fsufs.2021.767998. DOI
Preissel S., Reckling M., Schläfke N., Zander P. Magnitude and Farm-Economic Value of Grain Legume Pre-Crop Benefits in Europe: A Review. Field Crops Res. 2015;175:64–79. doi: 10.1016/j.fcr.2015.01.012. DOI
Czech Statistical Office Livestock Production. [(accessed on 6 January 2023)]. Available online: https://www.czso.cz/csu/czso/zem_cr.
Žalud Z., Trnka M., Dubrovský M., Hlavinka P., Semerádová D., Kocmánková E. Climate Change Impacts on Selected Aspects of the Czech Agricultural Production. Plant Prot. Sci. 2009;45:11–20. doi: 10.17221/2833-PPS. DOI
Zahradníček P., Brázdil R., Štěpánek P., Trnka M. Reflections of Global Warming in Trends of Temperature Characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:1211–1229. doi: 10.1002/joc.6791. DOI
Kundzewicz Z.W., Matczak P. Climate Change Regional Review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012;3:297–311. doi: 10.1002/wcc.175. DOI
Hemmerle H., Bayer P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020;8:575894. doi: 10.3389/feart.2020.575894. DOI
Benz S.A., Bayer P., Winkler G., Blum P. Recent Trends of Groundwater Temperatures in Austria. Hydrol. Earth Syst. Sci. 2018;22:3143–3154. doi: 10.5194/hess-22-3143-2018. DOI
Ribes A., Corre L., Gibelin A.L., Dubuisson B. Issues in Estimating Observed Change at the Local Scale—A Case Study: The Recent Warming over France. Int. J. Climatol. 2016;36:3794–3806. doi: 10.1002/joc.4593. DOI
Twardosz R., Walanus A., Guzik I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021;178:4021–4032. doi: 10.1007/s00024-021-02860-6. DOI
Brown P.J., DeGaetano A.T. A Paradox of Cooling Winter Soil Surface Temperatures in a Warming Northeastern United States. Agric. For. Meteorol. 2011;151:947–956. doi: 10.1016/j.agrformet.2011.02.014. DOI
Griffiths G.M., Chambers L.E., Haylock M.R., Manton M.J., Nicholls N., Baek H.J., Choi Y., Della-Marta P.M., Gosai A., Iga N., et al. Change in Mean Temperature as a Predictor of Extreme Temperature Change in the Asia-Pacific Region. Int. J. Climatol. 2005;25:1301–1330. doi: 10.1002/joc.1194. DOI
Brázdil R., Zahradníček P., Dobrovolný P., Štěpánek P., Trnka M. Observed Changes in Precipitation during Recent Warming: The Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:3881–3902. doi: 10.1002/joc.7048. DOI
Szwed M. Variability of Precipitation in Poland under Climate Change. Theor. Appl. Climatol. 2019;135:1003–1015. doi: 10.1007/s00704-018-2408-6. DOI
Grillakis M.G. Increase in Severe and Extreme Soil Moisture Droughts for Europe under Climate Change. Sci. Total Environ. 2019;660:1245–1255. doi: 10.1016/j.scitotenv.2019.01.001. PubMed DOI
Lhotka O., Kyselý J., Farda A. Climate Change Scenarios of Heat Waves in Central Europe and Their Uncertainties. Theor. Appl. Climatol. 2018;131:1043–1054. doi: 10.1007/s00704-016-2031-3. DOI
Trenberth K.E. Changes in Precipitation with Climate Change. Clim. Res. 2011;47:123–138. doi: 10.3354/cr00953. DOI
Szwed M., Karg G., Pińskwar I., Radziejewski M., Graczyk D., Kȩdziora A., Kundzewicz Z.W. Climate Change and Its Effect on Agriculture, Water Resources and Human Health Sectors in Poland. Nat. Hazards Earth Syst. Sci. 2010;10:1725–1737. doi: 10.5194/nhess-10-1725-2010. DOI
Kristensen K., Schelde K., Olesen J.E. Winter Wheat Yield Response to Climate Variability in Denmark. J. Agric. Sci. 2011;149:33–47. doi: 10.1017/S0021859610000675. DOI
Le Gouis J., Oury F.X., Charmet G. How Changes in Climate and Agricultural Practices Influenced Wheat Production in Western Europe. J. Cereal Sci. 2020;93:102960. doi: 10.1016/j.jcs.2020.102960. DOI
Harkness C., Semenov M.A., Areal F., Senapati N., Trnka M., Balek J., Bishop J. Adverse Weather Conditions for UK Wheat Production under Climate Change. Agric. For. Meteorol. 2020;282–283:107862. doi: 10.1016/j.agrformet.2019.107862. PubMed DOI PMC
Webber H., Ewert F., Olesen J.E., Müller C., Fronzek S., Ruane A.C., Bourgault M., Martre P., Ababaei B., Bindi M., et al. Diverging Importance of Drought Stress for Maize and Winter Wheat in Europe. Nat. Commun. 2018;9:4249. doi: 10.1038/s41467-018-06525-2. PubMed DOI PMC
Eitzinger J., Trnka M., Semerádová D., Thaler S., Svobodová E., Hlavinka P., Šiška B., Takáč J., Malatinská L., Nováková M., et al. Regional Climate Change Impacts on Agricultural Crop Production in Central and Eastern Europe—Hotspots, Regional Differences and Common Trends. J. Agric. Sci. 2013;151:787–812. doi: 10.1017/S0021859612000767. DOI
Austin R.B. Yield of Wheat in the United Kingdom: Recent Advances and Prospects. Crop Sci. 1999;39:1604–1610. doi: 10.2135/cropsci1999.3961604x. DOI
Hejcman M., Kunzová E., Šrek P. Sustainability of Winter Wheat Production over 50 Years of Crop Rotation and N, P and K Fertilizer Application on Illimerized Luvisol in the Czech Republic. Field Crops Res. 2012;139:30–38. doi: 10.1016/j.fcr.2012.10.005. DOI
Kunzová E., Hejcman M. Yield Development of Winter Wheat over 50 Years of Nitrogen, Phosphorus and Potassium Application on Greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010;33:166–174. doi: 10.1016/j.eja.2010.05.002. DOI
Hejcman M., Kunzová E. Sustainability of Winter Wheat Production on Sandy-Loamy Cambisol in the Czech Republic: Results from a Long-Term Fertilizer and Crop Rotation Experiment. Field Crops Res. 2010;115:191–199. doi: 10.1016/j.fcr.2009.11.004. DOI
Shiferaw B., Smale M., Braun H.J., Duveiller E., Reynolds M., Muricho G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013;5:291–317. doi: 10.1007/s12571-013-0263-y. DOI
Pingali P.L. Green Revolution: Impacts, Limits, Andthe Path Ahead. Proc. Natl. Acad. Sci. USA. 2012;109:12302–12308. doi: 10.1073/pnas.0912953109. PubMed DOI PMC
Hao M.-D., Fan J., Wang Q.-J., Dang T.-H., Guo S.-L., Wang J.-J. Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau. Pedosphere. 2007;17:257–264. doi: 10.1016/S1002-0160(07)60032-0. DOI
Chen H., Deng A., Zhang W., Li W., Qiao Y., Yang T., Zheng C., Cao C., Chen F. Long-Term Inorganic plus Organic Fertilization Increases Yield and Yield Stability of Winter Wheat. Crop J. 2018;6:589–599. doi: 10.1016/j.cj.2018.06.002. DOI
Wang D., Xu Z., Zhao J., Wang Y., Yu Z. Excessive Nitrogen Application Decreases Grain Yield and Increases Nitrogen Loss in a Wheat-Soil System. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011;61:681–692. doi: 10.1080/09064710.2010.534108. DOI
Linina A., Ruza A. The Influence of Cultivar, Weather Conditions and Nitrogen Fertilizer on Winter Wheat Grain Yield. Agron. Res. 2018;16:147–156. doi: 10.15159/AR.18.034. DOI
Hignett T.P. Fertilizer Manual. Springer; Dordrecht, The Netherlands: 1985. History of Chemical Fertilizers; pp. 3–10.
Chloupek O., Hrstkova P., Schweigert P. Yield and Its Stability, Crop Diversity, Adaptability and Response to Climate Change, Weather and Fertilisation over 75 Years in the Czech Republic in Comparison to Some European Countries. Field Crops Res. 2004;85:167–190. doi: 10.1016/S0378-4290(03)00162-X. DOI
N’Dayegamiye A., Whalen J.K., Tremblay G., Nyiraneza J., Grenier M., Drapeau A., Bipfubusa M. The Benefits of Legume Crops on Corn and Wheat Yield, Nitrogen Nutrition, and Soil Properties Improvement. Agron. J. 2015;107:1653–1665. doi: 10.2134/agronj14.0416. DOI
Thiessen Martens J.R., Entz M.H., Hoeppner J.W. Legume Cover Crops with Winter Cereals in Southern Manitoba: Fertilizer Replacement Values for Oat. Can. J. Plant Sci. 2005;85:645–648. doi: 10.4141/P04-114. DOI
Cela S., Santiveri F., Lloveras J. Optimum Nitrogen Fertilization Rates for Second-Year Corn Succeeding Alfalfa under Irrigation. Field Crops Res. 2011;123:109–116. doi: 10.1016/j.fcr.2011.05.003. DOI
Czech Statistical Office per Hectare Yields of Crops Harvested. [(accessed on 6 January 2023)]. Available online: https://www.czso.cz/csu/czso/13-zemedelstvi-86ttvi4ns6.
Hlisnikovský L., Ivičic P., Barłóg P., Grzebisz W., Menšík L., Kunzová E. The Effects of Weather and Fertilization on Grain Yield and Stability of Winter Wheat Growing on Orthic Luvisol—Analysis of Long-Term Field Experiment. Plants. 2022;11:1825. doi: 10.3390/plants11141825. PubMed DOI PMC
Song X., Fang C., Yuan Z.Q., Li F.M. Long-Term Growth of Alfalfa Increased Soil Organic Matter Accumulation and Nutrient Mineralization in a Semi-Arid Environment. Front. Environ. Sci. 2021;9:649346. doi: 10.3389/fenvs.2021.649346. DOI
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
IUSS Working Group WRB . World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO; Rome, Italy: 2015. World Soil Resources Reports No. 106.
Shapiro A.S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Kang M.S. A Rank-Sum Method for Selecting High-Yielding, Stable Corn Genotypes. Cereal Res. Commun. 1988;16:113–115.
Pour-Aboughadareh A., Yousefian M., Moradkhani H., Poczai P., Siddique K.H.M. STABILITYSOFT: A New Online Program to Calculate Parametric and Non-Parametric Stability Statistics for Crop Traits. Appl. Plant Sci. 2019;7:e01211. doi: 10.1002/aps3.1211. PubMed DOI PMC