• This record comes from PubMed

Development and the Effect of Weather and Mineral Fertilization on Grain Yield and Stability of Winter Wheat following Alfalfa-Analysis of Long-Term Field Trial

. 2023 Mar 21 ; 12 (6) : . [epub] 20230321

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RO0418, QK1810010, QK21020155 Ministry of Agriculture

Within the framework of a long-term experiment, established in 1955, we evaluated the development and effects of weather and mineral fertilization (Control, NPK1, NPK2, NPK3, NPK4) on the yield and stability of winter wheat following alfalfa. In total, 19 seasons were analysed. The weather changed considerably at the experimental site. Significant increases in minimal, mean, and maximal temperatures were dated to the period 1987-1988, while precipitation remained the same to this day (insignificantly increasing trend by 0.5 mm per annum). Rising temperatures in November, May, and July positively affected wheat grain yield, especially in treatments with higher N doses. No relationship between yield and precipitation was recorded. Highest inter-annual yield variability was recorded in Control and NPK4 treatments. Although minerally fertilized treatments provided slightly higher yields, the difference between Control and NPK treatments was insignificant. According to the linear-plateau response model, the recommended dose of 44 kg ha-1 N corresponds with yield of 7.4 t ha-1, while Control provides an average yield of 6.8 t ha-1. The application of higher doses did not lead to significant grain yield increase. Alfalfa as a preceding crop reduces the need of N fertilization and contributes to sustainable conventional agriculture, however, its share in crop rotations is decreasing both in the Czech Republic and in Europe.

See more in PubMed

Czech Statistical Office Areas under Crops. [(accessed on 6 January 2023)]. Available online: https://www.czso.cz/csu/czso/zem_cr.

Peng Z., Wang L., Xie J., Li L., Coulter J.A., Zhang R., Luo Z., Cai L., Carberry P., Whitbread A. Conservation Tillage Increases Yield and Precipitation Use Efficiency of Wheat on the Semi-Arid Loess Plateau of China. Agric. Water Manag. 2020;231:106024. doi: 10.1016/j.agwat.2020.106024. DOI

Morgounov A., Abugalieva A., Martynov S. Effect of Climate Change and Variety on Long-Term Variation of Grain Yield and Quality in Winter Wheat in Kazakhstan. Cereal Res. Commun. 2014;42:163–172. doi: 10.1556/CRC.2013.0047. DOI

Horvat D., Loncaric Z., Vukadinovic V., Drezner G., Bertic B., Dvojković K. The Influence of Mineral Fertilization on Winter Wheat Yield and Quality. Cereal Res. Commun. 2006;34:429–432. doi: 10.1556/CRC.34.2006.1.107. DOI

Lollato R.P., Mark K.E., Jaenisch B.R. Wheat Grain Yield and Grain Protein Concentration Response to Nitrogen Rate During the 2018–2019 Growing Season in Kansas. Kansas Agric. Exp. Stn. Res. Rep. 2020;6 doi: 10.4148/2378-5977.7974. DOI

Zecevic V., Knezevic D., Boskovic J., Micanovic D., Dozet G. Effect of Nitrogen Fertilization on Winter Wheat Quality. Cereal Res. Commun. 2010;38:243–249. doi: 10.1556/CRC.38.2010.2.10. DOI

Litke L., Gaile Z., Ruža A. Effect of Nitrogen Fertilization on Winter Wheat Yield and Yield Quality. Agron. Res. 2018;16:500–509. doi: 10.15159/AR.18.064. DOI

Leghari S.J., Wahocho N.A., Laghari G.M., Hafeez Laghari A. Role of Nitrogen for Plant Growth and Development: A Review. Adv. Environ. Biol. 2016;10:209–218.

Kronstad W.E. Wheat: Prospects for Global Improvement. Springer; Dordrecht, The Netherlands: 1997. Agricultural Development and Wheat Breeding in the 20th Century; pp. 1–10.

Zhang W.J., Zhang X.Y. A Forecast Analysis on Fertilizers Consumption Worldwide. Environ. Monit. Assess. 2007;133:427–434. doi: 10.1007/s10661-006-9597-7. PubMed DOI

Yu Z., Liu J., Kattel G. Historical Nitrogen Fertilizer Use in China from 1952 to 2018. Earth Syst. Sci. Data. 2022;14:5179–5194. doi: 10.5194/essd-14-5179-2022. DOI

Cao P., Lu C., Yu Z. Historical Nitrogen Fertilizer Use in Agricultural Ecosystems of the Contiguous United States during 1850-2015: Application Rate, Timing, and Fertilizer Types. Earth Syst. Sci. Data. 2018;10:969–984. doi: 10.5194/essd-10-969-2018. DOI

Jepsen M.R., Kuemmerle T., Müller D., Erb K., Verburg P.H., Haberl H., Vesterager J.P., Andrič M., Antrop M., Austrheim G., et al. Transitions in European Land-Management Regimes between 1800 and 2010. Land Use policy. 2015;49:53–64. doi: 10.1016/j.landusepol.2015.07.003. DOI

Spiertz J.H.J. Sustainable Agriculture. Volume 23. Springer; Dordrecht, The Netherlands: 2009. Nitrogen, Sustainable Agriculture and Food Security: A Review; pp. 635–651.

Sun C., Chen L., Zhai L., Liu H., Wang K., Jiao C., Shen Z. National Assessment of Nitrogen Fertilizers Fate and Related Environmental Impacts of Multiple Pathways in China. J. Clean. Prod. 2020;277:123519. doi: 10.1016/j.jclepro.2020.123519. DOI

Mahvi A.H., Nouri J., Babaei A.A., Nabizadeh R. Agricultural Activities Impact on Groundwater Nitrate Pollution. Int. J. Environ. Sci. Technol. 2005;2:41–47. doi: 10.1007/BF03325856. DOI

Zebarth B.J., Drury C.F., Tremblay N., Cambouris A.N. Opportunities for Improved Fertilizer Nitrogen Management in Production of Arable Crops in Eastern Canada: A Review. Can. J. Soil Sci. 2009;89:113–132. doi: 10.4141/CJSS07102. DOI

Górski J., Dragon K., Kaczmarek P.M.J. Nitrate Pollution in the Warta River (Poland) between 1958 and 2016: Trends and Causes. Environ. Sci. Pollut. Res. 2019;26:2038–2046. doi: 10.1007/s11356-017-9798-3. PubMed DOI PMC

O’Donovan J.T., Turkington T.K., Edney M.J., Clayton G.W., McKenzie R.H., Juskiw P.E., Lafond G.P., Grant C.A., Brandt S., Harker K.N., et al. Seeding Rate, Nitrogen Rate, and Cultivar Effects on Malting Barley Production. Agron. J. 2011;103:709–716. doi: 10.2134/agronj2010.0490. DOI

Zhang M., Wang H., Yi Y., Ding J., Zhu M., Li C., Guo W., Feng C., Zhu X. Effect of Nitrogen Levels and Nitrogen Ratios on Lodging Resistance and Yield Potential of Winter Wheat (Triticum aestivum L.) PLoS ONE. 2017;12:e0187543. doi: 10.1371/journal.pone.0187543. PubMed DOI PMC

Kong L., Xie Y., Hu L., Si J., Wang Z. Excessive Nitrogen Application Dampens Antioxidant Capacity and Grain Filling in Wheat as Revealed by Metabolic and Physiological Analyses. Sci. Rep. 2017;7:43363. doi: 10.1038/srep43363. PubMed DOI PMC

Khan A., Ahmad A., Ali W., Hussain S., Ajayo B.S., Raza M.A., Kamran M., Te X., al Amin N., Ali S., et al. Optimization of Plant Density and Nitrogen Regimes to Mitigate Lodging Risk in Wheat. Agron. J. 2020;112:2535–2551. doi: 10.1002/agj2.20211. DOI

Hochmuth G., Hanlon E., Overman A. Fertilizer Experimentation, Data Analyses, and Interpretation for Developing Fertilization Recommendations—Examples with Vegetable Crop Research. 2017. [(accessed on 6 January 2023)]. Available online: https://edis.ifas.ufl.edu/publication/SS548.

Klikocka H., Cybulska M., Barczak B., Narolski B., Szostak B., Kobiałka A., Nowak A., Wójcik E. The Effect of Sulphur and Nitrogen Fertilization on Grain Yield and Technological Quality of Spring Wheat. Plant Soil Environ. 2016;62:230–236. doi: 10.17221/18/2016-PSE. DOI

Ali S.A., Tedone L., Verdini L., Cazzato E., De Mastro G. Wheat Response to No-Tillage and Nitrogen Fertilization in a Long-Term Faba Bean-Based Rotation. Agronomy. 2019;9:50. doi: 10.3390/agronomy9020050. DOI

Ma G., Liu W., Li S., Zhang P., Wang C., Lu H., Wang L., Xie Y., Ma D., Kang G. Determining the Optimal N Input to Improve Grain Yield and Quality in Winter Wheat with Reduced Apparent N Loss in the North China Plain. Front. Plant Sci. 2019;10:1–12. doi: 10.3389/fpls.2019.00181. PubMed DOI PMC

Brázdil R., Trnka M., Dobrovolný P., Chromá K., Hlavinka P., Žalud Z. Variability of Droughts in the Czech Republic, 1881–2006. Theor. Appl. Climatol. 2009;97:297–315. doi: 10.1007/s00704-008-0065-x. DOI

Zahradníček P., Trnka M., Brázdil R., Možný M., Štěpánek P., Hlavinka P., Žalud Z., Malý A., Semerádová D., Dobrovolný P., et al. The Extreme Drought Episode of August 2011-May 2012 in the Czech Republic. Int. J. Climatol. 2015;35:3335–3352. doi: 10.1002/joc.4211. DOI

Bouabdelli S., Zeroual A., Meddi M., Assani A. Impact of Temperature on Agricultural Drought Occurrence under the Effects of Climate Change. Theor. Appl. Climatol. 2022;148:191–209. doi: 10.1007/s00704-022-03935-7. DOI

Wang Q., Wu J., Lei T., He B., Wu Z., Liu M., Mo X., Geng G., Li X., Zhou H., et al. Temporal-Spatial Characteristics of Severe Drought Events and Their Impact on Agriculture on a Global Scale. Quat. Int. 2014;349:10–21. doi: 10.1016/j.quaint.2014.06.021. DOI

Werndl C. On Defining Climate and Climate Change. Br. J. Philos. Sci. 2016;67:337–364. doi: 10.1093/bjps/axu048. DOI

Grusson Y., Wesström I., Joel A. Impact of Climate Change on Swedish Agriculture: Growing Season Rain Deficit and Irrigation Need. Agric. Water Manag. 2021;251:106858. doi: 10.1016/j.agwat.2021.106858. DOI

Olesen J.E., Bindi M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002;16:239–262. doi: 10.1016/S1161-0301(02)00004-7. DOI

Olesen J.E., Trnka M., Kersebaum K.C., Skjelvåg A.O., Seguin B., Peltonen-Sainio P., Rossi F., Kozyra J., Micale F. Impacts and Adaptation of European Crop Production Systems to Climate Change. Eur. J. Agron. 2011;34:96–112. doi: 10.1016/j.eja.2010.11.003. DOI

Agovino M., Casaccia M., Ciommi M., Ferrara M., Marchesano K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic. 2019;105:525–543. doi: 10.1016/j.ecolind.2018.04.064. DOI

Knox J., Hess T., Daccache A., Wheeler T. Climate Change Impacts on Crop Productivity in Africa and South Asia. Environ. Res. Lett. 2012;7:034032. doi: 10.1088/1748-9326/7/3/034032. DOI

Mendelsohn R. The Impact of Climate Change on Agriculture in Asia. J. Integr. Agric. 2014;13:660–665. doi: 10.1016/S2095-3119(13)60701-7. DOI

Garfin G., Jardine A., Merideth R., Black M., LeRoy S. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. Island Press; Washington, DC, USA: 2013. DOI

Thai T.H., Bellingrath-Kimura S.D., Hoffmann C., Barkusky D. Effect of Long-Term Fertiliser Regimes and Weather on Spring Barley Yields in Sandy Soil in North-East Germany. Arch. Agron. Soil Sci. 2020;66:1812–1826. doi: 10.1080/03650340.2019.1697436. DOI

Addy J.W.G., Ellis R.H., Macdonald A.J., Semenov M.A., Mead A. Investigating the Effects of Inter-Annual Weather Variation (1968–2016) on the Functional Response of Cereal Grain Yield to Applied Nitrogen, Using Data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020;284:107898. doi: 10.1016/j.agrformet.2019.107898. PubMed DOI PMC

Hatfield J.L., Dold C. Agroclimatology and Wheat Production: Coping with Climate Change. Front. Plant Sci. 2018;9:224. doi: 10.3389/fpls.2018.00224. PubMed DOI PMC

Macholdt J., Piepho H.P., Honermeier B. Mineral NPK and Manure Fertilisation Affecting the Yield Stability of Winter Wheat: Results from a Long-Term Field Experiment. Eur. J. Agron. 2019;102:14–22. doi: 10.1016/j.eja.2018.10.007. DOI

Macholdt J., Styczen M.E., Macdonald A., Piepho H.P., Honermeier B. Long-Term Analysis from a Cropping System Perspective: Yield Stability, Environmental Adaptability, and Production Risk of Winter Barley. Eur. J. Agron. 2020;117:126056. doi: 10.1016/j.eja.2020.126056. DOI

St. Luce M., Grant C.A., Ziadi N., Zebarth B.J., O’Donovan J.T., Blackshaw R.E., Harker K.N., Johnson E.N., Gan Y., Lafond G.P., et al. Preceding Crops and Nitrogen Fertilization Influence Soil Nitrogen Cycling in No-till Canola and Wheat Cropping Systems. Field Crops Res. 2016;191:20–32. doi: 10.1016/j.fcr.2016.02.014. DOI

Nielsen D.C., Vigil M.F. Wheat Yield and Yield Stability of Eight Dryland Crop Rotations. Agron. J. 2018;110:594–601. doi: 10.2134/agronj2017.07.0407. DOI

Götze P., Rücknagel J., Wensch-Dorendorf M., Märländer B., Christen O. Crop Rotation Effects on Yield, Technological Quality and Yield Stability of Sugar Beet after 45 Trial Years. Eur. J. Agron. 2017;82:50–59. doi: 10.1016/j.eja.2016.10.003. DOI

Sieling K., Stahl C., Winkelmann C., Christen O. Growth and Yield of Winter Wheat in the First 3 Years of a Monoculture under Varying N Fertilization in NW Germany. Eur. J. Agron. 2005;22:71–84. doi: 10.1016/j.eja.2003.12.004. DOI

Plaza-Bonilla D., Nolot J.M., Raffaillac D., Justes E. Innovative Cropping Systems to Reduce N Inputs and Maintain Wheat Yields by Inserting Grain Legumes and Cover Crops in Southwestern France. Eur. J. Agron. 2017;82:331–341. doi: 10.1016/j.eja.2016.05.010. DOI

Ballesta A., Lloveras J. Nitrogen Replacement Value of Alfalfa to Corn and Wheat under Irrigated Mediterranean Conditions. Spanish J. Agric. Res. 2010;8:159. doi: 10.5424/sjar/2010081-1155. DOI

Yost M.A., Pound C.A., Creech J.E., Cardon G.E., Pace M.G., Kitchen B., Nelson M., Russell K. Nitrogen Requirements of First-year Small Grains after Alfalfa. Soil Sci. Soc. Am. J. 2021;85:1698–1709. doi: 10.1002/saj2.20269. DOI

Kebede E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021;5:767998. doi: 10.3389/fsufs.2021.767998. DOI

Preissel S., Reckling M., Schläfke N., Zander P. Magnitude and Farm-Economic Value of Grain Legume Pre-Crop Benefits in Europe: A Review. Field Crops Res. 2015;175:64–79. doi: 10.1016/j.fcr.2015.01.012. DOI

Czech Statistical Office Livestock Production. [(accessed on 6 January 2023)]. Available online: https://www.czso.cz/csu/czso/zem_cr.

Žalud Z., Trnka M., Dubrovský M., Hlavinka P., Semerádová D., Kocmánková E. Climate Change Impacts on Selected Aspects of the Czech Agricultural Production. Plant Prot. Sci. 2009;45:11–20. doi: 10.17221/2833-PPS. DOI

Zahradníček P., Brázdil R., Štěpánek P., Trnka M. Reflections of Global Warming in Trends of Temperature Characteristics in the Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:1211–1229. doi: 10.1002/joc.6791. DOI

Kundzewicz Z.W., Matczak P. Climate Change Regional Review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012;3:297–311. doi: 10.1002/wcc.175. DOI

Hemmerle H., Bayer P. Climate Change Yields Groundwater Warming in Bavaria, Germany. Front. Earth Sci. 2020;8:575894. doi: 10.3389/feart.2020.575894. DOI

Benz S.A., Bayer P., Winkler G., Blum P. Recent Trends of Groundwater Temperatures in Austria. Hydrol. Earth Syst. Sci. 2018;22:3143–3154. doi: 10.5194/hess-22-3143-2018. DOI

Ribes A., Corre L., Gibelin A.L., Dubuisson B. Issues in Estimating Observed Change at the Local Scale—A Case Study: The Recent Warming over France. Int. J. Climatol. 2016;36:3794–3806. doi: 10.1002/joc.4593. DOI

Twardosz R., Walanus A., Guzik I. Warming in Europe: Recent Trends in Annual and Seasonal Temperatures. Pure Appl. Geophys. 2021;178:4021–4032. doi: 10.1007/s00024-021-02860-6. DOI

Brown P.J., DeGaetano A.T. A Paradox of Cooling Winter Soil Surface Temperatures in a Warming Northeastern United States. Agric. For. Meteorol. 2011;151:947–956. doi: 10.1016/j.agrformet.2011.02.014. DOI

Griffiths G.M., Chambers L.E., Haylock M.R., Manton M.J., Nicholls N., Baek H.J., Choi Y., Della-Marta P.M., Gosai A., Iga N., et al. Change in Mean Temperature as a Predictor of Extreme Temperature Change in the Asia-Pacific Region. Int. J. Climatol. 2005;25:1301–1330. doi: 10.1002/joc.1194. DOI

Brázdil R., Zahradníček P., Dobrovolný P., Štěpánek P., Trnka M. Observed Changes in Precipitation during Recent Warming: The Czech Republic, 1961–2019. Int. J. Climatol. 2021;41:3881–3902. doi: 10.1002/joc.7048. DOI

Szwed M. Variability of Precipitation in Poland under Climate Change. Theor. Appl. Climatol. 2019;135:1003–1015. doi: 10.1007/s00704-018-2408-6. DOI

Grillakis M.G. Increase in Severe and Extreme Soil Moisture Droughts for Europe under Climate Change. Sci. Total Environ. 2019;660:1245–1255. doi: 10.1016/j.scitotenv.2019.01.001. PubMed DOI

Lhotka O., Kyselý J., Farda A. Climate Change Scenarios of Heat Waves in Central Europe and Their Uncertainties. Theor. Appl. Climatol. 2018;131:1043–1054. doi: 10.1007/s00704-016-2031-3. DOI

Trenberth K.E. Changes in Precipitation with Climate Change. Clim. Res. 2011;47:123–138. doi: 10.3354/cr00953. DOI

Szwed M., Karg G., Pińskwar I., Radziejewski M., Graczyk D., Kȩdziora A., Kundzewicz Z.W. Climate Change and Its Effect on Agriculture, Water Resources and Human Health Sectors in Poland. Nat. Hazards Earth Syst. Sci. 2010;10:1725–1737. doi: 10.5194/nhess-10-1725-2010. DOI

Kristensen K., Schelde K., Olesen J.E. Winter Wheat Yield Response to Climate Variability in Denmark. J. Agric. Sci. 2011;149:33–47. doi: 10.1017/S0021859610000675. DOI

Le Gouis J., Oury F.X., Charmet G. How Changes in Climate and Agricultural Practices Influenced Wheat Production in Western Europe. J. Cereal Sci. 2020;93:102960. doi: 10.1016/j.jcs.2020.102960. DOI

Harkness C., Semenov M.A., Areal F., Senapati N., Trnka M., Balek J., Bishop J. Adverse Weather Conditions for UK Wheat Production under Climate Change. Agric. For. Meteorol. 2020;282–283:107862. doi: 10.1016/j.agrformet.2019.107862. PubMed DOI PMC

Webber H., Ewert F., Olesen J.E., Müller C., Fronzek S., Ruane A.C., Bourgault M., Martre P., Ababaei B., Bindi M., et al. Diverging Importance of Drought Stress for Maize and Winter Wheat in Europe. Nat. Commun. 2018;9:4249. doi: 10.1038/s41467-018-06525-2. PubMed DOI PMC

Eitzinger J., Trnka M., Semerádová D., Thaler S., Svobodová E., Hlavinka P., Šiška B., Takáč J., Malatinská L., Nováková M., et al. Regional Climate Change Impacts on Agricultural Crop Production in Central and Eastern Europe—Hotspots, Regional Differences and Common Trends. J. Agric. Sci. 2013;151:787–812. doi: 10.1017/S0021859612000767. DOI

Austin R.B. Yield of Wheat in the United Kingdom: Recent Advances and Prospects. Crop Sci. 1999;39:1604–1610. doi: 10.2135/cropsci1999.3961604x. DOI

Hejcman M., Kunzová E., Šrek P. Sustainability of Winter Wheat Production over 50 Years of Crop Rotation and N, P and K Fertilizer Application on Illimerized Luvisol in the Czech Republic. Field Crops Res. 2012;139:30–38. doi: 10.1016/j.fcr.2012.10.005. DOI

Kunzová E., Hejcman M. Yield Development of Winter Wheat over 50 Years of Nitrogen, Phosphorus and Potassium Application on Greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010;33:166–174. doi: 10.1016/j.eja.2010.05.002. DOI

Hejcman M., Kunzová E. Sustainability of Winter Wheat Production on Sandy-Loamy Cambisol in the Czech Republic: Results from a Long-Term Fertilizer and Crop Rotation Experiment. Field Crops Res. 2010;115:191–199. doi: 10.1016/j.fcr.2009.11.004. DOI

Shiferaw B., Smale M., Braun H.J., Duveiller E., Reynolds M., Muricho G. Crops That Feed the World 10. Past Successes and Future Challenges to the Role Played by Wheat in Global Food Security. Food Secur. 2013;5:291–317. doi: 10.1007/s12571-013-0263-y. DOI

Pingali P.L. Green Revolution: Impacts, Limits, Andthe Path Ahead. Proc. Natl. Acad. Sci. USA. 2012;109:12302–12308. doi: 10.1073/pnas.0912953109. PubMed DOI PMC

Hao M.-D., Fan J., Wang Q.-J., Dang T.-H., Guo S.-L., Wang J.-J. Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau. Pedosphere. 2007;17:257–264. doi: 10.1016/S1002-0160(07)60032-0. DOI

Chen H., Deng A., Zhang W., Li W., Qiao Y., Yang T., Zheng C., Cao C., Chen F. Long-Term Inorganic plus Organic Fertilization Increases Yield and Yield Stability of Winter Wheat. Crop J. 2018;6:589–599. doi: 10.1016/j.cj.2018.06.002. DOI

Wang D., Xu Z., Zhao J., Wang Y., Yu Z. Excessive Nitrogen Application Decreases Grain Yield and Increases Nitrogen Loss in a Wheat-Soil System. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011;61:681–692. doi: 10.1080/09064710.2010.534108. DOI

Linina A., Ruza A. The Influence of Cultivar, Weather Conditions and Nitrogen Fertilizer on Winter Wheat Grain Yield. Agron. Res. 2018;16:147–156. doi: 10.15159/AR.18.034. DOI

Hignett T.P. Fertilizer Manual. Springer; Dordrecht, The Netherlands: 1985. History of Chemical Fertilizers; pp. 3–10.

Chloupek O., Hrstkova P., Schweigert P. Yield and Its Stability, Crop Diversity, Adaptability and Response to Climate Change, Weather and Fertilisation over 75 Years in the Czech Republic in Comparison to Some European Countries. Field Crops Res. 2004;85:167–190. doi: 10.1016/S0378-4290(03)00162-X. DOI

N’Dayegamiye A., Whalen J.K., Tremblay G., Nyiraneza J., Grenier M., Drapeau A., Bipfubusa M. The Benefits of Legume Crops on Corn and Wheat Yield, Nitrogen Nutrition, and Soil Properties Improvement. Agron. J. 2015;107:1653–1665. doi: 10.2134/agronj14.0416. DOI

Thiessen Martens J.R., Entz M.H., Hoeppner J.W. Legume Cover Crops with Winter Cereals in Southern Manitoba: Fertilizer Replacement Values for Oat. Can. J. Plant Sci. 2005;85:645–648. doi: 10.4141/P04-114. DOI

Cela S., Santiveri F., Lloveras J. Optimum Nitrogen Fertilization Rates for Second-Year Corn Succeeding Alfalfa under Irrigation. Field Crops Res. 2011;123:109–116. doi: 10.1016/j.fcr.2011.05.003. DOI

Czech Statistical Office per Hectare Yields of Crops Harvested. [(accessed on 6 January 2023)]. Available online: https://www.czso.cz/csu/czso/13-zemedelstvi-86ttvi4ns6.

Hlisnikovský L., Ivičic P., Barłóg P., Grzebisz W., Menšík L., Kunzová E. The Effects of Weather and Fertilization on Grain Yield and Stability of Winter Wheat Growing on Orthic Luvisol—Analysis of Long-Term Field Experiment. Plants. 2022;11:1825. doi: 10.3390/plants11141825. PubMed DOI PMC

Song X., Fang C., Yuan Z.Q., Li F.M. Long-Term Growth of Alfalfa Increased Soil Organic Matter Accumulation and Nutrient Mineralization in a Semi-Arid Environment. Front. Environ. Sci. 2021;9:649346. doi: 10.3389/fenvs.2021.649346. DOI

Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC

IUSS Working Group WRB . World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO; Rome, Italy: 2015. World Soil Resources Reports No. 106.

Shapiro A.S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI

Kang M.S. A Rank-Sum Method for Selecting High-Yielding, Stable Corn Genotypes. Cereal Res. Commun. 1988;16:113–115.

Pour-Aboughadareh A., Yousefian M., Moradkhani H., Poczai P., Siddique K.H.M. STABILITYSOFT: A New Online Program to Calculate Parametric and Non-Parametric Stability Statistics for Crop Traits. Appl. Plant Sci. 2019;7:e01211. doi: 10.1002/aps3.1211. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...